LECTURE 03 MATHEMATICAL REVIEW IN R

Oran Kittithreerapronchai¹

¹Department of Industrial Engineering, Chulalongkorn University Bangkok 10330 THAILAND

last updated: August 7, 2023

Matrix Calculus Geometry Supplemen

OUTLINE

- MATRIX AND LINEAR ALGEBRA
- 2 Reviews of Function Analysis & Calculus
- 3 REVIEWS OF OPTIMIZATION AND GEOMETRY
- REVIEWS MATERIALS FOR MATHEMATICAL REVIEW
 - Extended Concept of Linear Algebra
 - Extended Concept of Convex
 - Extended Concept of Convergence

source: General references [NC20, CZ13, Win22, Pat14]

NOTATION EXPANSION

- **Decision Variable:** single variable ⇔ matrix
- Feasible Region: all points ⇔ convex set, convex set
- Visualization: scatter plot ⇔ level set, gradient, param. function
- Unique Opt: $f''(\cdot) \Leftrightarrow \text{convex function} \equiv \text{positive definite} (\nabla^2 f(\cdot))$
- **Efficiency:** # iterations ⇔ convergent rate
- Quality of Solution: reliable solution
 ⇔ in descent direction

KEY CONCEPTS

All iterative algorithms requires 'right' direction & 'right' step size

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \gamma_k \mathbf{d}_k$$

WHAT IS MATRIX?

$$\mathbf{A} = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix}$$

- row & column:
- scalar product: $\mathbf{u}^T \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$.
- norm: $\|\mathbf{v}\| = \sqrt{\mathbf{v}^T \cdot \mathbf{v}}$
- matrix multiplication: AB

Scalar Product/ Inner Product

Let,
$$\mathbf{u} = \begin{bmatrix} 7 \\ 4 \\ 2 \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$$

observe follows

- $\mathbf{u}^T \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}^T = \|\mathbf{u}^T\| \|\mathbf{v}\| \cos \theta$, where θ is the angle between the vectors
- $\bullet \mathbf{u}^T \cdot \mathbf{u} = \|\mathbf{u}\|^2 = \sum_i (u_i)^2$

Cross Product of Matrix

- Meaning: finding an orthogonal vector to other vectors
- Use In IE: constraint optimization

$$\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \begin{vmatrix} \vec{\mathbf{i}} & \vec{\mathbf{j}} & \vec{\mathbf{k}} \\ \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \\ \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{vmatrix}$$

MATRIX MULTIPLICATION

Let,
$$\mathbf{A} = \begin{bmatrix} 7 & 1 \\ 4 & -3 \\ 2 & 0 \end{bmatrix}$$

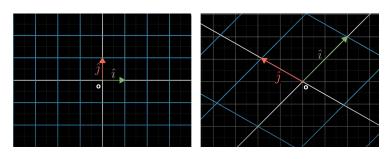
$$\mathbf{B} = \begin{bmatrix} 2 & 1 & 7 \\ 0 & -1 & 4 \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} 1 & -1 & 3 \\ 2 & 2 & 3 \\ -1 & 4 & 7 \end{bmatrix}$$

Verify these rules

- Associative law: (AB)C = A(BC) = ABC
- Distributive law: A(B+C) = AB + AC
- No Commutative law $AB \neq BA$

Multiplication = Transformation



 $\textbf{Source.} \ '\text{Matrix multiplication'} \ \text{by} \ 3Blue 1Brown | \text{youtube.com}$

- What function that take one vector and return another vector
- Linear Transformation: stretch, compress, and rotation at origin so the grid is evenly space and parallel

EXAMPLE

$$\begin{bmatrix} 0 & 2 \\ 1/2 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & y \\ \frac{1}{2}x \end{bmatrix}$$

Matrix Calculus Geometry Supplement

What is System of Linear Equations?

A system of linear equation:

where x_1, x_2, \ldots, x_n are referred to as *variables* and the a_{ij} 's and b_i 's are *constants*. There are m equations in n variables.

- Above can be represent as Ax = b or simply A|b
- A solution to SLE m equations in n variables is a set of values for the variables that satisfies all m equations.

MATRIX REPRESENTATION

Find the matrix representation of:

$$2x_1 + 5x_2 = 4$$
$$3x_1 + 7x_2 = 2$$

$$\begin{bmatrix} 2 & 5 \\ 3 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

Examples of Three Possible Cases

CASE 1: NO SOLUTION

$$\begin{bmatrix} 1 & 0 & 0 & & 1 \\ 1 & 2 & 1 & & 3 \\ 2 & 4 & 2 & & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & & 1 \\ 0 & 2 & 1 & & 2 \\ 0 & 0 & 0 & & -2 \end{bmatrix}$$

Case 2: Unique solution

$$\begin{bmatrix} 2 & 2 & 1 & 9 \\ 2 & -1 & 2 & 6 \\ 1 & -1 & 2 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Case 3: infinite number of solutions

$$\begin{bmatrix} 1 & 1 & 0 & & 1 \\ 0 & 1 & 1 & & 3 \\ 1 & 2 & 1 & & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & & -2 \\ 0 & 1 & 1 & & 3 \\ 0 & 0 & 0 & & 0 \end{bmatrix}$$

Determinant of Matrix

Determinant

- What: unique property of square matrix, implying scaling of transformation
- Use: find linear dependent and eigenvalue
- Useful properties:
 - row operation + or leaves the determinant unchanged (no scaling)
 - $\bullet \ \det AB = (\det A) (\det B)$
 - \bullet det $\mathbf{A} = \det \mathbf{A}^T$

EXAMPLE Find determinant of

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

$$\det \mathbf{A} = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{vmatrix}$$
$$= \begin{vmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{vmatrix}$$

INVERSE OF MATRIX

INVERSE

- What: unique property of square matrix, i.e. $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$
- Compute: Using row operation to convert [A|I] into $[I^{-1}|A]$

$$\begin{bmatrix} 2 & 0 & -1 & & 1 & 0 & 0 \\ 3 & 1 & 2 & & 0 & 1 & 0 \\ -1 & 0 & 1 & & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & & 1 & 0 & 1 \\ 0 & 1 & 0 & & & -5 & 1 & -7 \\ 0 & 0 & 1 & & 1 & 0 & 2 \end{bmatrix}$$

Positive Definite

- What: general condition for $f''(x) \le 0$
- **Motivation:** If $(x, y) \neq (0, 0)$, when does $f(\cdot) > 0 \ \forall (x, y) \in \mathbb{R}^2$, where $f(x, y) = ax^2 + 2bxy + cy^2$?

$$f(x,y) = \frac{1}{2} \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 2a & 2b \\ 2b & 2c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- Observation:
 - Even a, b, and c > 0, then $f(\cdot) > 0$
 - At least a and c > 0
- Indefinite: $ac b^2 < 0$
- Positive definite: $ac b^2 > 0$ and a > 0
- Negative definite: $ac b^2 > 0$ and a < 0 (imply c < 0)

DEFINITE THEOREM

DEFINITION

realMatrix A real symmetric matrix $\bf A$ is **positive definite** if and only if it satisfies one of following conditions:

- $\mathbf{x}^{T}\mathbf{A}\mathbf{x} > 0$ for all nonzero vector \mathbf{x}
- All the eigenvalues of **A** satisfy $\lambda_i > 0$
- ullet All the upper left submatrices ${f A}_k$ has positive determinants
- All the pivots (without row exchanges) satisfy $d_i > 0$

EXAMPLE 1: Is A positive definite

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$

EXAMPLES OF POSITIVE DEFINITE

EXAMPLE 2: Show that this matrix is A is not positive semi-definite

$$\mathbf{A} = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 0 \end{bmatrix}$$

HINT: check determine of A_2

EXAMPLE 3: For what range of numbers b and c are matrices \mathbf{B} and \mathbf{C} are positive definite

$$\mathbf{B} = \begin{bmatrix} b & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & b \end{bmatrix} \quad \mathbf{C} = \begin{bmatrix} 2 & 2 & 4 \\ 2 & c & 8 \\ 4 & 8 & 7 \end{bmatrix}$$
$$b \in (-2, 1) \qquad c = \emptyset$$

EIGENVALUE AND EIGENVECTOR

- Eigenvector: vector that preserve its direction after linear transformation
- **Definition:** Given matrix $\bf A$, a scalar λ and vector $\bf v$ are called eigenvalue and eigenvector of matrix $\bf A$ if and only if $\bf A \, x = \lambda x$
- Properties: $det(\lambda \mathbf{I} \mathbf{A}) = 0$ (why?)
- Theorem: all eigenvalue of a symmetric matrix are real

FIND ALL EIGENVALUES OF MATRIX A

$$\mathbf{A} = \begin{bmatrix} 1 & 4 & 5 \\ 0 & \frac{3}{4} & 6 \\ 0 & 0 & \frac{1}{2} \end{bmatrix} \quad \begin{bmatrix} \lambda - 1 & 4 & 5 \\ 0 & \lambda - \frac{3}{4} & 6 \\ 0 & 0 & \lambda - \frac{1}{2} \end{bmatrix}$$

Matrix Calculus Geometry Supplement

SUMMARY: GEOMETRY OF MATRIX

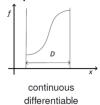
- Vector: at origin
- Addition: result of connecting vectors head to tail
- **Negative:** reverse direction (rotate 180°)
- Transpose: reflection of vector (across diagonal)
- Multiplicative: linear projection/transformation
- Inversion: reversing linear projection/transformation
- Determinant: scaling of transformation/ signed 'area' of parallelogram
- Rank: minimal necessary dimension to represent collection of vectors
- More Reading: https://www.gastonsanchez.com/matrix4sl/

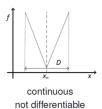
DIFFERENTIABILITY

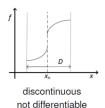
• What: a function $f(\cdot)$ that maps $\mathbb{D} \subseteq \mathbb{R}^n$ to \mathbb{R}

$$f'(\mathbf{x_0} \in \mathbb{D}) \equiv \lim_{\|\boldsymbol{\epsilon}\| \to 0} \frac{f(\mathbf{x_0} + \boldsymbol{\epsilon}) - f(\mathbf{x_0})}{\|\boldsymbol{\epsilon}\|}$$

- Meaning: change of function within x₀
- Note: derivative may not exist!







Matrix Calculus Geometry Supplement

Taylor Series

If a function $f\colon \mathbb{R}^n \to \mathbb{R}$ is m times continuously differentiable (i.e., $f\in \mathcal{C}^m$) on $[\mathbf{a},\mathbf{b}]$, then

$$f(\mathbf{b}) = f(\mathbf{a}) + \frac{\mathbf{b} - \mathbf{a}}{1!} f^{(1)}(\mathbf{a}) + \frac{(\mathbf{b} - \mathbf{a})^2}{2!} f^{(2)}(\mathbf{a}) + \ldots + \frac{(\mathbf{b} - \mathbf{a})^{m-1}}{(m-1)!} f^{(m-1)}(\mathbf{a}) + R_m$$

where,

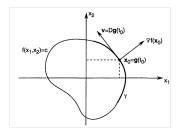
$$f^{(k)}(\cdot) = \nabla^k f(\mathbf{x})$$

$$R_m = \frac{(b-a)^m}{m!} f^{(m)} \left(a + \lambda(b-a) \right) \text{ and } \lambda \in [0,1]$$

Note

- Accuracy of series depends on number of terms
- $\lim_{m\to\infty} R_m = 0$
- $\nabla f(\mathbf{x})$ is called Gradient vector
- $\nabla^2 f(\mathbf{x})$ or $\mathbf{F}(\mathbf{x})$ is called Hessian matrix

Gradient Vector



Source. Chong & Zak. 2001 pp 68 [CZ13]

- What: first-order partial derivative at a given point
- Gradient ($\nabla f(x_0)$): the direction maximize increasing rate of $f(\cdot)$

$$f(x_1, y_1) = 2 x_1 - x_2. \ \nabla f(\mathbf{x}) = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

HESSIAN MATRIX

$$\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix} \quad \text{and} \quad \nabla^2 f = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$$

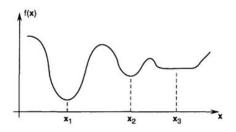
Source. Chong & Zak. 2001 pp 68 [CZ13]

- What: second-order partial derivative; always symmetric matrix
- **Hessian** ($\nabla^2 f(\mathbf{x_0})$): the local curvature of of $f(\cdot)$

$$f(x_1, y_1) = 2x_1^2 - \sin(x_2). \quad \nabla^2 f(\mathbf{x}) = \begin{bmatrix} 4 & 0 \\ 0 & -\sin(x_2) \end{bmatrix}$$

Matrix Calculus Geometry Supplement

Local and Global Minimizer



Source. Chong & Zak. 2001 pp 72 [CZ13]

LOCAL MINIMIZER

Suppose that $f \colon \mathbb{R}^n \to \mathbb{R}$ is a function defined on $\mathcal{F} \subset \mathbb{R}^n$. A point $\mathbf{x}^* \in \mathcal{F}$ is a *local minimizer* of $f(\cdot)$ if $\exists \ \epsilon > 0$ such that $f(\mathbf{x}) \geq f(\mathbf{x}^*)$ for all $\mathbf{x} \in \mathcal{F} \setminus \mathbf{x}^*$ and $\|\mathbf{x} - \mathbf{x}^*\| < \epsilon$

GLOBAL MINIMIZER.

A point $x^* \in \mathcal{F}$ is a global minimizer of $f(\cdot)$ if $f(x) \geq f(x^*)$ for all $x \in \mathcal{F} \setminus x^*$

OPTIMAL CONDITION

• What: Is this point local optima?

• First Order: $\nabla f(\mathbf{x}_*) = 0$

• **Second Order:** $\nabla^2 f(\mathbf{x}_*)$ is positive definite (for minimization)

EXAMPLE: Check Optimality Conditions:

•
$$f(x_1, x_2) = \frac{1}{3}x_1^3 + \frac{1}{2}x_1^2 + 2x_1x_2 + \frac{1}{2}x_2^2 - x_2 + 9$$

$$\nabla f(\mathbf{x}) = \begin{bmatrix} x_1^2 + x_1 + 2x_2 \\ 2x_1 + x_2 - 1 \end{bmatrix}$$

$$(x_1 - 2)(x_1 - 1) = 0 \text{ or } \mathbf{x} = \{[2, -3]^T, [1, -1]^T\}$$

$$\nabla^2 f(\mathbf{x}) = \begin{bmatrix} 2x_1 + 1 & 2 \\ 2 & 1 \end{bmatrix}$$

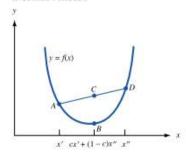
$$\nabla^2 f(\mathbf{x}_a) = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix} \text{ and } \nabla^2 f(\mathbf{x}_b) = \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}$$

OPTIMAL VS DEFINITE

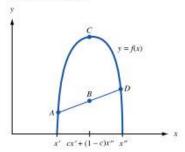
Nature of x^*	Definiteness of ${\cal H}$	$\mathbf{x}^{T}H\mathbf{x}$	λ_i	Illustration
Minimum	positive definite	> 0	> 0	
Valley	positive semi-definite	≥ 0	≥ 0	-
Saddle point	indefinite	$\neq 0$	$\neq 0$	4
Ridge	negative semi-definite	\leq 0	≤ 0	=
Maximum	negative definite	< 0	< 0	~

CONVEX FUNCTION & CONCAVE FUNCTION

A Convex Function



A Concave Function



Source. Winston Section 11.3 pp 42 [Win22]

Verify Convex & Concave Functions

- $f_1(x) = \ln(x)$, where $S \in (0, \infty)$ concave function $f_1''(x) = -x^{-2}$
- $f_2(x_1, x_2) = x_1^3 + 3x_1x_2 + x_2^2$, where $S \in \mathbb{R}^2$ either convex nor concave

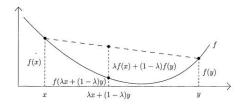
$$f_2''(x_1, x_2) = \begin{bmatrix} 6x_1 & 3\\ 3 & 2 \end{bmatrix}$$

• $f_3(x_1, x_2) = x_1^2 + x_2^2$, where $S \in \mathbb{R}^2$

$$f_3''(x_1,x_2)\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

• $f_4(x_1, x_2, x_3) = -x_1^2 - x_2^2 - 2x_3^2 + \frac{1}{2}x_1x_2$, where $\mathcal{S} \in \mathbb{R}^3$ concave function because eigenvalue = [-1.5, -2.5, -4]

Convex Function



Source. Chong & Zak. 2001 pp 42 [CZ13]

DEFINITION (CONVEX FUNCTION)

A function $f(\cdot)$ is *convex* on a convex set \mathcal{S} if it satisfies

$$f(\lambda \mathbf{u} + (1 - \lambda)\mathbf{v}) \le \lambda f(\mathbf{u}) + (1 - \lambda) f(\mathbf{v})$$

• well-known: e^{ax} for $a \in \mathbb{R}$; x^a for $a \ge 1$; sum of convex function

VERIFY FIRST & SECOND ORDER CONDITIONS

•
$$f_1(x_1, x_2) = x_1^2 + e^{x_2} - 3x_1 x_2$$

$$\nabla f_1(\mathbf{x}) = [2x_1 - 3x_2, e^{x_2} - 3x_1]^T$$

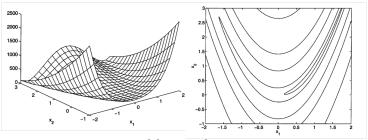
$$\nabla^2 f_1(\mathbf{x}) = \begin{bmatrix} 2 & -3 \\ -3 & e^{x_2} \end{bmatrix}$$

•
$$f_2(x_1, x_2) = (x_1 + x_2) e^{-(x_1 + x_2)}$$

$$\nabla f_2(\mathbf{x}) = \begin{bmatrix} -(x_1 + x_2) e^{-(x_1 + x_2)} + e^{-(x_1 + x_2)} \\ -(x_1 + x_2) e^{-(x_1 + x_2)} + e^{-(x_1 + x_2)} \end{bmatrix}$$

$$abla^2 f_2(\mathbf{x}) = igg|$$

LEVEL SETS



 $f(\mathbf{x}) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$ or Rosenbrock's function

Source. Chong & Zak. 2001 pp 67 [CŻ13]

DEFINITION (LEVEL SET)

The level set is a function $f: \mathbb{R}^n \to \mathbb{R}$ at level c is the set of points

$$S = \{x : f(x) = c\}$$

REFERENCE

- [CZ13] E. Chong and S. Zak.
 An introduction to optimization.
 John Wiley & Sons, 2013.
- [NC20] Fred Nwanganga and Mike Chapple.

 Practical machine learning in R.

 John Wiley & Sons, 2020.
- [Pat14] Manas A Pathak.

 Beginning data science with R.

 Springer, 2014.
- [Win22] Wayne L Winston.
 Operations research: applications and algorithms.
 Cengage Learning, 2022.

Matrix Calculus Geometry Supplement

Special Matrix

UNIT VECTOR A unit vector, e_j , is a vector where the 1 appears in the *j*th position and 0's elsewhere.

DIAGONAL MATRIX A square matrix whose off-diagonal elements are all equal to zero. For example:

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_{1,1} & 0 & 0 \\ 0 & \mathbf{a}_{2,2} & 0 \\ 0 & 0 & \mathbf{a}_{3,3} \end{bmatrix}$$

IDENTITY MATRIX A diagonal matrix in which all diagonal elements are equal to

- 1. An identity matrix of order m is designated as either \mathbf{I}_m or just
- I. For example:

$$\mathbf{I}_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

ORTHOGONAL MATRIX A matrix in which all unit column vectors are perpendicular to one others

Special Matrix

NULL OR ZERO MATRIX A null matrix has all of its elements equal to zero. For

example:
$$\mathbf{0} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Symmetric Matrix A symmetric matrix is one whose transpose and the matrix itself are equal. That is $A = A^T$. For example:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 6 & 4 \\ 3 & 4 & 9 \end{bmatrix} = \mathbf{A}^T$$

AUGMENTED MATRIX An augmented matrix is one in which rows or columns of another matrix, of appropriate order, are appended to the original matrix. For example:

$$\mathbf{A} = \begin{bmatrix} 1 & 4 \\ 5 & 6 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \quad \mathbf{A} | \mathbf{b} = \begin{bmatrix} 1 & 4 & | & 3 \\ 5 & 6 & | & 1 \end{bmatrix}$$

Special Matrix

LOWER/UPPER TRIANGULAR A special sparse square matrix. For example:

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & -3 & 0 \\ 1 & 1 & 3 \end{bmatrix} \qquad \mathbf{U} = \begin{bmatrix} 2 & 1 & 4 \\ 0 & -3 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

NULL SPACE (MATRIX) The set vectors that orthogonal to rows of a given matrix. $\mathcal{N}(\mathbf{A}) = \{\mathbf{p} \in \mathbb{R}^n : \mathbf{A}\mathbf{p} = \mathbf{0}\}$ For example:

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}, \quad \mathbf{Ap} = \mathbf{0}, \qquad \mathbf{p} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ -\mathbf{v}_2 \end{bmatrix}$$

DIAGONAL FORM OF MATRIX

DEFINITION

Diagonal Form of Matrix If matrix $\bf A$ has n linearly independent eigenvectors, then it can be diagonalize in ${\bf S}{\bf \Lambda}{\bf S}^{-1}$ where ${\bf S}^{-1}$ is eigenvector matrix and ${\bf \Lambda}$ is eigenvalues matrix.

EXAMPLE: Each year $\frac{1}{10}$ of the people outside BKK move in, and $\frac{2}{10}$ of the people inside BKK move out. What is the population at year k.

$$\begin{bmatrix} y_{n+1} \\ z_{n+1} \end{bmatrix} = \begin{bmatrix} 0.9 & 0.2 \\ 0.1 & 0.8 \end{bmatrix} \begin{bmatrix} y_n \\ z_n \end{bmatrix}$$

$$\begin{bmatrix} y_k \\ z_k \end{bmatrix} = \begin{bmatrix} 0.9 & 0.2 \\ 0.1 & 0.8 \end{bmatrix}^k \begin{bmatrix} y_0 \\ z_0 \end{bmatrix} = (\mathbf{S}^{-1} \mathbf{\Lambda} \mathbf{S})^k \begin{bmatrix} y_0 \\ z_0 \end{bmatrix}$$
$$= \begin{bmatrix} 0.894 & -0.707 \\ -0.707 & 0.707 \end{bmatrix} \begin{bmatrix} 1.0^k \\ 0.7^k \end{bmatrix} \begin{bmatrix} 0.745 & 0.745 \\ -0.471 & 0.942 \end{bmatrix} \begin{bmatrix} y_0 \\ z_0 \end{bmatrix}$$

MATRIX DECOMPOSITION

- What: processing original matrix A into multiplication of matrix with special properties
- Popular Decomposition:
 - LU DECOMPOSITION for compute determinant and find inverse

$$\mathbf{A} = \mathbf{L} \mathbf{U} \qquad \begin{bmatrix} 4 & 3 \\ 6 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1.5 & 1 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 0 & -1.5 \end{bmatrix}$$

QR DECOMPOSITION for solve SLE and linear regression

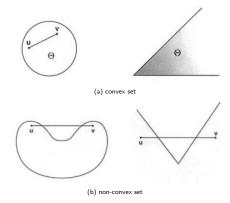
$$\mathbf{A} = \mathbf{Q} \, \mathbf{R} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & -2 \end{bmatrix} = \begin{bmatrix} -\sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{2}} \\ -\sqrt{\frac{1}{2}} & +\sqrt{\frac{1}{2}} \end{bmatrix} \begin{bmatrix} -\sqrt{2} & -\sqrt{\frac{1}{2}} & \sqrt{2} \\ 0 & \sqrt{\frac{1}{2}} & -\sqrt{2} \end{bmatrix}$$

• SINGLE VALUE DECOMPOSITION for image transformataion

$$\mathbf{A} = \mathbf{U} \, \mathbf{\Lambda} \, \mathbf{V}^{\mathsf{T}} \qquad \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} \\ \sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{2}} \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} \\ \sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{2}} \end{bmatrix}$$

Matrix Calculus Geometry Supplement

Convex Sets



Source. Chong & Zak. 2001 pp 42 $\,$ [CZ13]

DEFINITION (CONVEX SET)

Set is *convex set* if, for any elements $\mathbf{u}, \mathbf{v} \in \mathcal{S} \ \lambda \mathbf{u} + (1 - \lambda) \mathbf{v} \in \mathcal{S} \ \lambda \in [0, 1]$

Example of Convex Sets

- **Definition:** empty set, line segment, hyperplane, \mathbb{R}^n
- Properties:
 - SCALING: If Θ is convex set and β is a real number, then $\beta\Theta$ is convex set
 - INTERSECTION If Θ_1 and Θ_2 are convex sets, then $\Theta_1 \cap \Theta_2$ is also convex
 - ADDITIVE: If Θ_1 and Θ_2 are convex sets, then

$$\Theta_1 + \Theta_2 = \{x : x = v_1 + v_2, v_1 \in \Theta_1, v_2 \in \Theta_2\}$$

is also convex

Matrix Calculus Geometry Supplement

RESULTS OF CONVEX FUNCTION

PROPERTIES

- **Invert:** convex function = concave function
- Preserve:
 - summation of convex functions is convex function
 - maximum value of convex functions is convex function
- Trivial: linear function both convex and concave

DETERMINE CONVEX FUNCTION

- In 1D: f'(x) > 0 for all $x \in S$
- In general: $\nabla^2 f(\mathbf{x}) > \mathbf{0}$ for all $\mathbf{x} \in \mathcal{S}$

Hessian matrix must be positive-definite for all $x \in \mathcal{S}$

- **Definition:** $\mathbf{x}^{T}\mathbf{Q}\mathbf{x} > 0$ for all \mathbf{x} , where \mathbf{Q} is symmetric matrix
- \bullet Sylvester'Criteria: all leading principle minors of ${\bf Q}$ are positive \to all eigenvalues are positive

SUFFICIENT CONDITION

• What: Is this point local optima?

• First Order: $\nabla f(\mathbf{x}_*) = 0$

• **Second Order:** $\nabla^2 f(\mathbf{x}_*)$ is positive definite (for minimization)

EXAMPLE: Check Optimality Conditions:

•
$$f(x_1, x_2) = \frac{1}{3}x_1^3 + \frac{1}{2}x_1^2 + 2x_1x_2 + \frac{1}{2}x_2^2 - x_2 + 9$$

$$\nabla f(\mathbf{x}) = \begin{bmatrix} x_1^2 + x_1 + 2x_2 \\ 2x_1 + x_2 - 1 \end{bmatrix}$$

$$(x_1 - 2)(x_1 - 1) = 0 \text{ or } \mathbf{x} = \{[2, -3]^T, [1, -1]^T\}$$

$$\nabla^2 f(\mathbf{x}) = \begin{bmatrix} 2x_1 + 1 & 2 \\ 2 & 1 \end{bmatrix}$$

$$\nabla^2 f(\mathbf{x}_a) = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix} \text{ and } \nabla^2 f(\mathbf{x}_b) = \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}$$

Verify First & Second Order Conditions

 $f_1(x_1, x_2) = x_1^2 + e^{x_2} - 3x_1 x_2$

$$\nabla f_1(\mathbf{x}) = \begin{bmatrix} 2x_1 - 3x_2, e^{x_2} - 3x_1 \end{bmatrix}^T$$
$$\nabla^2 f_1(\mathbf{x}) = \begin{bmatrix} 2 & -3 \\ -3 & e^{x_2} \end{bmatrix}$$

```
expr <- expression(x1^2+exp(x2)-3*x1*x2)
exprD1 <- expression(x1, NA)
exprD1 [[1]] <- D(expr, "x1")
exprD1 [[2]] <- D(expr, "x2")

exprD2 (-- expression(NA, NA, NA, NA)
exprD2 [[1]] <- D(D(expr, "x1"), "x1")
exprD2 [[2]] <- D(D(expr, "x2"), "x1")
exprD2 [[3]] <- D(D(expr, "x1"), "x2")
exprD2 [[4]] <- D(D(expr, "x2"), "x2")
exprD2 [[4]] <- D(D(expr, "x2"), "x2")
expr.all <- function(x1, x2) {
body(expr, all) <- deriv3(expr, c("x1", "x2"))</pre>
```

RATE OF CONVERGENCE

• What: Does algorithm converge? If so, How fast?

• Define: $e_k \equiv x_k - x_*$

• Converge: $\lim_{k\to\infty} \frac{\|e_{k+1}\|}{\|e_k\|^r} = C$

EXAMPLE: Find the converge rate of these sequence:

• **Sq#1** 2, 1.1, 1.01, 1.001, 1.0001, ..., $1 + 10^{-k}$

$$x_* = 1$$
 and $e_k = x_k - x_* = 10^{-k}$
 $\lim_{k \to \infty} \frac{10^{-k-1}}{10^{-k}} = \frac{1}{10}$

• **Sq#2** 4, 2.5, 2.05, 2.00060975, ..., $x_{k+1} = \frac{x_k}{2} + \frac{2}{x_k}$

if
$$\mathbf{x}_0=4$$
 then $\mathbf{x}_*=2$ and $\mathbf{e}_{k+1}=\frac{\mathbf{x}_k}{2}+\frac{2}{\mathbf{x}_k}-2=\frac{1}{2\mathbf{x}_k}\mathbf{e}_k^2$

$$\lim_{k \to \infty} \frac{\frac{1}{2x_k} e_k^2}{\|e_k\|^2} = \frac{1}{4}$$

Guaranteeing Convergence

• Line Search: right directions & many steps

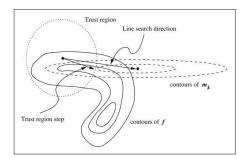
$$x_{k+1} = x_k + \gamma_k \, \mathbf{d}_k$$
 so that $\mathit{f}(x_k + \gamma_k \, \mathbf{d}_k) < \mathit{f}(x_k)$

In general: $f(x_0) > \ldots > f(x_k) > \ldots > f(x_*)$

In other words: $d_k^T \nabla f(\mathbf{x}) < 0, \forall k$

In addition: $\gamma_k > 0$, $\forall k \text{ and } \sum_{k=1}^{\infty} \gamma_k = \infty$

• Trust Region: adjustable steps depending on results



Source. Nocedal & Wright. 1999 pp 66