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OUTLINE

@ MATRIX AND LINEAR ALGEBRA
© REVIEWS OF FUNCTION ANALYSIS & CALCULUS
© REVIEWS OF OPTIMIZATION AND GEOMETRY

@ REVIEWS MATERIALS FOR MATHEMATICAL REVIEW
@ Extended Concept of Linear Algebra
o Extended Concept of Convex
o Extended Concept of Convergence

source: General references [NC20, CZ13, Win22, Pat14]
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NOTATION EXPANSION

Decision Variable: single variable < matrix

Feasible Region: all points < convex set, convex set
Visualization: scatter plot < level set, gradient, param. function
Unique Opt: f”'(-) < convex function = positive definite (V2f(-))
Efficiency: # iterations < convergent rate

Quality of Solution: reliable solution < in descent direction

KEY CONCEPTS

All iterative algorithms requires 'right’ direction & 'right’ step size

X1 = Xx + Yidy

COMP METH v2.00: unconstraint 3/ 43



Matrix

WHAT 1S MATRIX?

a1 d12 -t din

a1 d22 -+ aan
A_ =

Ama1 dm,;2 " dmn

row & column:
scalar product: u” - v = uyvy + ugve + - -+ + UpVa.
norm: ||[v||=vv’ v

matrix multiplication: AB

source: [CZ13]

COMP METH v2.00: unconstraint 4/ 43



Matrix

SCALAR ProDUCT/ INNER PRODUCT

observe follows

o u’-v=v-u’ = |[u”|||v| cosf, where § is the angle between the vectors

o u” u=[uf? = ¥ (u)?
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Matrix

CRross PropucT OF MATRIX

@ Meaning: finding an orthogonal vector to other vectors

@ Use In IE: constraint optimization

axb= |1 j Kk
a, a, a,
b1 bz bz
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Matrix

MATRIX MULTIPLICATION

7 1
Let, A = (4 -3
2 0|
2 1 7
B _[0 -1 4}
1 =1 3]
c=2 2 3
-1 4 7

Verify these rules
o Associative law: (AB)C = A(BC) = ABC
e Distributive law: A(B+ C) = AB+ AC

o No Commutative law AB # BA
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Matrix Calculus Geometry Supplement

MULTIPLICATION = TRANSFORMATION

Source. 'Matrix multiplication’ by 3BluelBrown|youtube.com

@ What function that take one vector and return another vector

o Linear Transformation: stretch, compress, and rotation at origin so the grid
is evenly space and parallel

e ol )= 3]
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Matrix

WHAT 1S SYSTEM OF LINEAR EQUATIONS?

A system of linear equation:

ayxi +aexg +... 4 aipxp = by

ag1x1 + agaXa + ... 4 apXp = by

Am1X1 + amexe+ ...+ AmpXn= bm

where x1,x2,. .., X, are referred to as variables and the a;'s and b;'s are constants.
There are m equations in n variables.

@ Above can be represent as Ax =b  or simply Alb

@ A solution to SLE m equations in n variables is a set of values for the
variables that satisfies all m equations.
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Matrix

MATRIX REPRESENTATION

Find the matrix representation of:

2X1 + 5X2 =4
3x1 + Txg = 2

¢ 91
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Matrix

ExXAMPLES OF THREE POSSIBLE CASES

CASE 1: NO SOLUTION

1 00 1 1 0 0 1
1 21 3 — 0 2 1 2
2 4 2 4 0 0 0 -2

CASE 2: UNIQUE SOLUTION

1 10 1 1 0 -1 —2
011 3 = 01 1 3
1 21 4 0 0 O 0
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Matrix

DETERMINANT OF MATRIX

DETERMINANT

@ What: unique property of square matrix, implying scaling of transformation
@ Use: find linear dependent and eigenvalue
o Useful properties:

@ row operation + or — leaves the determinant unchanged (no scaling)

o det AB = (det A) (det B)

o det A =det AT

EXAMPLE Find determinant of

1 2 3
A=14 5 6
7 8 9
1 2 3 1 2 3
detA=4 5 6/ = |0 -3 —6
7T 8 9 0 -6 —12
1 2 3
0 -3 —6
0 O 0
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Matrix

INVERSE OF MATRIX

INVERSE
@ What: unique property of square matrix, i.e. AA™! =1
e Compute: Using row operation to convert [A|I] into [I7!|A]

2 0 -1 1 00 1 00 1 0 1
3 1 2 01 0| — 01 0 -5 1 -7
-1 0 1 0 0 1 0 01 1 0 2
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Matrix

POSITIVE DEFINITE

@ What: general condition for f/(x) <0

e Motivation: If (x,y) # (0,0), when does f(-) > 0 V(x,y) € R?, where
fix,y) = ax® + 2bxy + cy??

1 2a 2b| |[x
=3k [5 3 [)
@ Observation:

@ Even a, b, and ¢ > 0, then f{-) >0
@ Atleast aand ¢ >0

Indefinite: ac— b?> <0

Positive definite: ac— b> >0and a> 0

Negative definite: ac— b*> > 0 and a < 0 (imply c < 0)
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Matrix

DEFINITE THEOREM

DEFINITION

realMatrix A real symmetric matrix A is positive definite if and only if it satisfies
one of following conditions:

@ xTAx > 0 for all nonzero vector x
@ All the eigenvalues of A satisfy \; > 0

@ All the upper left submatrices Ag has positive determinants

@ All the pivots (without row exchanges) satisfy d; > 0

EXAMPLE 1: Is A positive definite
2 -1 -1

A=1|-1 2 -1
-1 -1 2
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Matrix

EXAMPLES OF POSITIVE DEFINITE

EXAMPLE 2: Show that this matrix is A is not positive semi-definite

HINT: check determine of Ay

EXAMPLE 3: For what range of numbers b and ¢ are matrices B and C are
positive definite

b 1 1 2 2
B=|1 b 1 C=12 c
1 1 b 4 8

-~ 0 W

be (-2,1) c=

=
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Matrix

EIGENVALUE AND EIGENVECTOR

o Eigenvector: vector that preserve its direction after linear transformation

o Definition: Given matrix A, a scalar A and vector v are called eigenvalue and
eigenvector of matrix A if and only if Ax = A\x

o Properties: det(A\I — A) =0 (why?)
@ Theorem: all eigenvalue of a symmetric matrix are real
FIND ALL EIGENVALUES OF MATRIX A

1 4 5 A-1 4 5
A=10 3 6 0 x-2 6
00 3 0 0 A-1
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Matrix

SUMMARY: GEOMETRY OF MATRIX

o More Reading: https://www.gastonsanchez.com/matrix4sl|/

Vector: at origin

Addition: result of connecting vectors head to tail

Negative: reverse direction (rotate 180°)

Transpose: reflection of vector (across diagonal)

Multiplicative: linear projection/transformation

Inversion: reversing linear projection /transformation

Determinant: scaling of transformation/ signed 'area’ of parallelogram

Rank: minimal necessary dimension to represent collection of vectors
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Calculus

DIFFERENTIABILITY

e What: a function f{-) that maps D C R” to R

f(xo + €) — f(x0)

llell—0 [l

{(Xo S ]D)) =

@ Meaning: change of function within xq

o Note: derivative may not exist!

Examples
£l f i f P
: 4
‘/’/ }
~ D : -//‘1 D
Ff (—," D (——“ >
X I Xn X I Xn X
continuous continuous discontinuous
differentiable not differentiable not differentiable
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Calculus

TAYLOR SERIES

If a function f: R” — R is m times continuously differentiable (i.e., f€ C™) on
[a,b], then

) = fa)+ @)+ wf‘z)(a) +ot %Am_l)(") R

where,
() = V*fix)
R = &= Am) (34 \(b—a)) and A € [0,1]
NoOTE
@ Accuracy of series depends on number of terms
o limy o Rm=20
e V f(x) is called Gradient vector

e V2 f(x) or F(x) is called Hessian matrix
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Calculus

GRADIENT VECTOR

f(xq ,xﬂ:(_\

X2

v=Dg(to)

Source. Chong & Zak. 2001 pp 68 [CZ13]

@ What: first-order partial derivative at a given point
e Gradient (Vf(x¢)): the direction maximize increasing rate of f{-)

fixi,y1) = 2x1 — xp. VAX) = {_21}
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Calculus

HESSIAN MATRIX

iix) ix;  fxpdxs i i,
o vy vy e
Vf = | dxz and VI = | dx2ixy HES dx; dx,
iaf a2 a2f iy
ity 4 dea0x;  dxgixs  x2

Source. Chong & Zak. 2001 pp 68 [CZ13]

o What: second-order partial derivative; always symmetric matrix
e Hessian (V?f(xg)): the local curvature of of f{-)

fixi, y1) = 2x¢ — sin(x). V*f(x) = [3 _sig(X2)]
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Geometry

LocAL AND GLOBAL MINIMIZER

fix)

xy x X3

Source. Chong & Zak. 2001 pp 72 [CZ13]

LOCAL MINIMIZER

Suppose that f: R” — R is a function defined on F C R”. A point x* € F is a local minimizer of f(-) if
3 € > 0 such that f(x) > f(x*) for all x € F\x* and [|]x — x*|| < €

GLOBAL MINIMIZER
A point x* € F is a global minimizer of f(-) if f(x) > f(x*) for all x € F\x* J

COMP METH v2.00: unconstraint PEYAE



Geometry

OpPTIMAL CONDITION

@ What: Is this point local optima?
@ First Order: Vf(x,) =0
e Second Order: V?f(x,) is positive definite (for minimization)
ExaMPLE: Check Optimality Conditions:
o flxi,x2) = 3x + 356 + 2x1 0 + 33 —x2 + 9
Vi) = [ 2]
(x1 —2)(xy —1) =0orx={[2,-3]T,[1,-1]"}

V2 Ax) = [2x1 +1 2]

2 1

o=l fwrea -]
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Geometry

OPTIMAL VS DEFINITE

Nature of x* Definiteness of H xTHx A lllustration

Minimum positive definite -0 -0

vé

Valley positive semi-definite >0 >0

Saddle point  indefinite £0 £0 "

Ridge negative semi-definite <0 <0 n’
—

Maximum negative definite <0 <0 N
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Geometry

CoNVvEX FuncTiON & CONCAVE FUNCTION

A Convex Function A Concave Function

¥ ¥

X (] = ™ oot =it x

Source. Winston Section 11.3 pp 42 [Win22]
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Geometry

VERIFY CONVEX & CONCAVE FUNCTIONS

e f1(x) =In(x), where S € (0,00)
concave function f}(x) = —x—2

o fo(x1,x2) = X} + 3x1x2 + X3, where S € R?
either convex nor concave

6x; 3
fg(xlﬂXQ) = [31 2:|

o f3(x1,x2) = X3 + x4, where S € R?

convex function

fi (x1, x2) B g}

o fi(x1,x2,x3) = —x3 — x5 — 2x4 + %xlxz, where S € R3
concave function because eigenvalue = [—1.5, —2.5, —4]
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Geometry

CoONVEX FUNCTION

P SO+ (1= At
x A+ (1-A)y Y

Source. Chong & Zak. 2001 pp 42 [CZ13]

DEFINITION (CoNVEX FUNCTION)
A function f{-) is convex on a convex set S if it satisfies

FAu+ (1= A)v) < AA) + (1= ) fv)

o well-known: €% for a€ R:; x? for a > 1; sum of convex function
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Geometry

VERIFY FIRST & SECOND ORDER CONDITIONS

o fi(x1,x2) = X} + €2 — 3x1 x2

VhA(x) = [2x1 — 3x2, €2 — 3x1}T
2 12 =3
V2, (x) = [_3 e&]
o f(x1,x) = (x1 + xg) e~ Catx)

_ —(x1+x2) —(x1+x2)
VfQ(X):|: (X1+X2)e +e ]

_(Xl + XQ) e—(X1+X2) 4 e—(X1+X2)

v - | ]
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Geometry

LEVEL SETS

’,:;&(‘\\
LSRN

(XXX \\ \\\ 22777/,

A4 \\ \‘:‘ il

X, -1 -2 x »
2 -5 - 05 0 05 1 15 2

x

4

f(x) = 100(xz — x7)2 + (1 — x1)? or Rosenbrock’s function

Source. Chong & Zak. 2001 pp 67 [CZ13]

DEFINITION (LEveL SET)
The level set is a function f: R” — R at level c is the set of points

S = {x:fx)=c}

COMP METH v2.00: unconstraint 30/ 43



Geometry
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Supplement

SPECIAL MATRIX

UNIT VECTOR A unit vector, e, is a vector where the 1 appears in the jth
position and 0's elsewhere.

DIAGONAL MATRIX A square matrix whose off-diagonal elements are all equal to
zero. For example:

al.1 0 0
A= 0 a2 0
0 0 ass

IDENTITY MATRIX A diagonal matrix in which all diagonal elements are equal to

1. An identity matrix of order m is designated as either I, or just
I. For example:

1 00
I;=10 1 0
0 01

ORTHOGONAL MATRIX A matrix in which all unit column vectors are
perpendicular to one others

source: [CZ13]
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Supplement

SPECIAL MATRIX

NULL OR ZERO MATRIX A null matrix has all of its elements equal to zero. For
0 0 0}

example: 0:{0 0 0

SYMMETRIC MATRIX A symmetric matrix is one whose transpose and the matrix
itself are equal. That is A = A'. For example:

1 3

2
A=12 6 4| =AT
3 49
AUGMENTED MATRIX An augmented matrix is one in which rows or columns of

another matrix, of appropriate order, are appended to the original
matrix. For example:

14 3 14| 3
S L R

source: [CZ13]
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Supplement

SPECIAL MATRIX

LOWER/UPPER TRIANGULAR A special sparse square matrix. For example:

1 0 0 2 1 4
L=1|4 -3 O U=1|0 -3 1
1 1 3 0 0 1

NULL SPACE (MATRIX) The set vectors that orthogonal to rows of a given
matrix. N'(A) = {p € R": Ap = 0} For example:

v
/1 =1 0 0 . _ |
A_[O 0 1 1]’ Ap=0. p=|,,

v

source: [CZ13]
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Supplement

DI1IAGONAL FORM OF MATRIX

DEFINITION

Diagonal Form of Matrix If matrix A has n linearly independent eigenvectors, then it

can be diagonalize in SAS™! where S™! is eigenvector matrix and A is eigenvalues
matrix.

EXAMPLE: Each year 75 of the people outside BKK move in, and {5 of the
people inside BKK move out. What is the population at year k.

Yor1| _ (09 0.2{ |y,
Zne1| |01 0.8] |z,
v, 0.9 021y K [y
k _ . . of —1 0
2 = o7 0a) 2] - eras ]
~[0.894 —0.707] [1.0% 0.745  0.745] [yo
~ |=0.707 0.707 0.7%| | —0.471 0.942] |z
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Supplement

MATRIX DECOMPOSITION

@ What: processing original matrix A into multiplication of matrix with special
properties

o Popular Decomposition:

o LU DECOMPOSITION for compute determinant and find inverse

4 3 1 0f |4 3
A=LU [6 3] {1.5 1} {O —1.5}
o QR DECOMPOSITION for solve SLE and linear regression
. /r _ /1 _ —. /L
N A S I [ DS
—\/; V3 0 \/; -V2

@ SINGLE VALUE DECOMPOSITION for image transformataion

Vil g v o
\/g

N

1 3 1 |0 2

2

A=UAV’ {3 1} =
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Supplement

CONVEX SETS

(a) convex set

(b) non-convex set

Source. Chong & Zak. 2001 pp 42 [CZ13]

DEFINITION (Convex SET)
Set is convex set if, for any elements u, vE€ S Au+ (1 - A)ve S A€ [0,1] J
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Supplement

ExAMPLE OF CONVEX SE

o Definition: empty set, line segment, hyperplane, R”
o Properties:

@ SCALING: If © is convex set and 3 is a real number, then 5O is convex set
@ INTERSECTION If ©1 and ©3 are convex sets, then ©1 (] O is also convex
@ ADDITIVE: If ©; and ©5 are convex sets, then

O1+0;={x:x=vVvi+V,vi €O1,vs € Os}

is also convex
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Supplement

REsuLTs OF CONVEX FUNCTION

PROPERTIES
@ Invert: convex function = - concave function
o Preserve:
@ summation of convex functions is convex function

@ maximum value of convex functions is convex function

@ Trivial: linear function both convex and concave

DETERMINE CONVEX FUNCTION
o In1D: f'(x)>0forall xe S
e In general: V2f(x) >0 forallxe S

Hessian matrix must be positive-definite for all x € S

o Definition: x*Qx > 0 for all x, where Q is symmetric matrix
@ Sylvester’Criteria: all leading principle minors of Q are positive — all
eigenvalues are positive
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Supplement

SUFFICIENT CONDITION

@ What: Is this point local optima?
@ First Order: Vf(x,) =0
e Second Order: V?f(x,) is positive definite (for minimization)
ExaMPLE: Check Optimality Conditions:
o flxi,x2) = 3x + 356 + 2x1 0 + 33 —x2 + 9
Vi) = [ 2]
(x1 —2)(xy —1) =0orx={[2,-3]T,[1,-1]"}

V2 Ax) = [2x1 +1 2]

2 1

o=l fwrea -]
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Supplement

VERIFY FIRST & SECOND ORDER CONDITIONS

@ fi(x1,x2) = xf + €2 — 3x1 x2

Vf(x) = [2x1 — 3x2, €2 — 3X1]T

v = % )

expr <- expression(x1”2+exp(x2)-3*x1%x2)
exprDl <- expression(NA,NA)
exprD1[[1]] <- D(expr,"xi")
exprD1[[2]] <- D(expr,"x2")

exprD2 <- expression(NA,NA,NA,NA)

exprD2[[1]1] <- D(D(expr,"x1"),"x1")
exprD2[[2]] <- D(D(expr,"x2"),"x1")
exprD2[[3]] <- D(D(expr,"x1"),"x2")
exprD2[[4]] <- D(D(expr,"x2"),"x2")

expr.all <- function(x1,x2){ }
body (expr.all) <- deriv3(expr,c("xi","x2"))
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Supplement

RATE OF CONVERGENCE

@ What: Does algorithm converge? If so, How fast?

o Define: e, = xx — x.

e Converge: limy_, o, “‘Tgﬂlr\l =C

EXAMPLE: Find the converge rate of these sequence:
e Sq#1 2, 1.1, 1.01, 1.001, 1.0001, ..., 1+ 107k

X, =1 and ef = x, — x, = 107K
0kt 1

limy o0 11074 = 10
© Sq#2 4, 2.5, 2.05, 2.00060975, ..., xkp1 = % + 2

if xo = 4 then x, =2 and ek+1:%+x%—2=2%kei

12
I 2% 1
M k— 0 Tec2 — 4
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Supplement

GUARANTEEING CONVERGENCE

@ Line Search: right directions & many steps
Xg4+1 = Xk + Yk dy so that f(Xk + % dk) < f(xk)
In general: f(xg) > ... > f(xx) > ... > f(x,)
In other words: d/Vf(x) <0, V k
In addition: ~, >0, V kand > o, % = o0

@ Trust Region: adjustable steps depending on results

sweeo. Trustregion

Line search direction

Trust region step contours of f

Source. Nocedal & Wright. 1999 pp 66
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