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Outline

1 Matrix and Linear Algebra

2 Reviews of Function Analysis & Calculus

3 Reviews of Optimization and Geometry

4 Reviews Materials for Mathematical Review
Extended Concept of Linear Algebra
Extended Concept of Convex
Extended Concept of Convergence

source: General references [NC20, CŻ13, Win22, Pat14]
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Notation Expansion

Decision Variable: single variable ⇔ matrix
Feasible Region: all points ⇔ convex set, convex set
Visualization: scatter plot ⇔ level set, gradient, param. function
Unique Opt: f ′′(·) ⇔ convex function ≡ positive definite (∇2f(·))
Efficiency: # iterations ⇔ convergent rate
Quality of Solution: reliable solution ⇔ in descent direction

Key Concepts
All iterative algorithms requires ’right’ direction & ’right’ step size

xk+1 = xk + γkdk
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What is Matrix?

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
... . . . ...

am,1 am,2 · · · am,n


row & column:
scalar product: uT · v = u1v1 + u2v2 + · · ·+ unvn.
norm: ∥v∥ =

√
vT · v

matrix multiplication: AB
source: [CŻ13]
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Scalar Product/ Inner Product

Let, u =

74
2


v =

23
0


observe follows

uT · v = v · uT = ∥uT∥∥v∥ cos θ, where θ is the angle between the vectors
uT · u = ∥u∥2 =

∑
i(ui)2
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Cross Product of Matrix

Meaning: finding an orthogonal vector to other vectors
Use In IE: constraint optimization
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Matrix Multiplication

Let, A =

7 1
4 −3
2 0


B =

[
2 1 7
0 −1 4

]

C=

 1 −1 3
2 2 3
−1 4 7


Verify these rules

Associative law: (AB)C = A(BC) = ABC
Distributive law: A(B + C) = AB + AC

No Commutative law AB ̸= BA
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Multiplication = Transformation

Source. ’Matrix multiplication’ by 3Blue1Brown|youtube.com

What function that take one vector and return another vector
Linear Transformation: stretch, compress, and rotation at origin so the grid
is evenly space and parallel

example [
0 2
1/2 0

] [
x
y

]
=

[
2 y
1
2x

]
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What is System of Linear Equations?

A system of linear equation:

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2

...
...

...
am1x1 + am2x2+ . . .+ amnxn= bm

where x1, x2, . . . , xn are referred to as variables and the aij’s and bi’s are constants.
There are m equations in n variables.

Above can be represent as Ax = b or simply A|b
A solution to SLE m equations in n variables is a set of values for the
variables that satisfies all m equations.
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Matrix Representation

Find the matrix representation of:

2x1 + 5x2 = 4

3x1 + 7x2 = 2

[
2 5
3 7

] [
x1
x2

]
=

[
4
2

]
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Examples of Three Possible Cases

Case 1: no solution1 0 0
∣∣ 1

1 2 1
∣∣ 3

2 4 2
∣∣ 4

 →

1 0 0
∣∣ 1

0 2 1
∣∣ 2

0 0 0
∣∣ −2


Case 2: unique solution2 2 1

∣∣ 9
2 −1 2

∣∣ 6
1 −1 2

∣∣ 5

 →

1 0 0
∣∣ 1

0 1 0
∣∣ 2

0 0 1
∣∣ 3


Case 3: infinite number of solutions1 1 0

∣∣ 1
0 1 1

∣∣ 3
1 2 1

∣∣ 4

 →

1 0 −1
∣∣ −2

0 1 1
∣∣ 3

0 0 0
∣∣ 0


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Determinant of Matrix
Determinant

What: unique property of square matrix, implying scaling of transformation
Use: find linear dependent and eigenvalue
Useful properties:

row operation + or − leaves the determinant unchanged (no scaling)
det AB = (det A) (det B)
det A = det AT

Example Find determinant of

A =

1 2 3
4 5 6
7 8 9



det A =

∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 2 3
0 −3 −6
0 −6 −12

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 2 3
0 −3 −6
0 0 0

∣∣∣∣∣∣
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Inverse of Matrix

Inverse
What: unique property of square matrix, i.e. AA−1 = I
Compute: Using row operation to convert [A|I] into [I−1| �A]

 2 0 −1
∣∣ 1 0 0

3 1 2
∣∣ 0 1 0

−1 0 1
∣∣ 0 0 1

 →

1 0 0
∣∣ 1 0 1

0 1 0
∣∣ −5 1 −7

0 0 1
∣∣ 1 0 2


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Positive Definite

What: general condition for f ′′(x) ≤ 0

Motivation: If (x, y) ̸= (0, 0), when does f(·) > 0 ∀(x, y) ∈ R2, where
f(x, y) = a x2 + 2b x y + c y2?

f(x, y) = 1

2

[
x y

] [
2a 2b
2b 2c

] [
x
y

]
Observation:

Even a, b, and c > 0, then f(·) >0
At least a and c > 0

Indefinite: a c − b2 < 0

Positive definite: a c − b2 > 0 and a > 0

Negative definite: a c − b2 > 0 and a < 0 (imply c < 0)
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Definite Theorem

Definition
realMatrix A real symmetric matrix A is positive definite if and only if it satisfies
one of following conditions:

xTAx > 0 for all nonzero vector x
All the eigenvalues of A satisfy λi > 0

All the upper left submatrices Ak has positive determinants
All the pivots (without row exchanges) satisfy di > 0

Example 1: Is A positive definite

A =

 2 −1 −1
−1 2 −1
−1 −1 2


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Examples of positive definite

Example 2: Show that this matrix is A is not positive semi-definite

A =

2 2 2
2 2 2
2 2 0


hint: check determine of A2

Example 3: For what range of numbers b and c are matrices B and C are
positive definite

B =

b 1 1
1 b 1
1 1 b

 C =

2 2 4
2 c 8
4 8 7


b ∈ (−2, 1) c = ∅
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Eigenvalue and Eigenvector

Eigenvector: vector that preserve its direction after linear transformation
Definition: Given matrix A, a scalar λ and vector v are called eigenvalue and
eigenvector of matrix A if and only if A x = λx
Properties: det(λI − A) = 0 (why?)
Theorem: all eigenvalue of a symmetric matrix are real

Find all eigenvalues of matrix A

A =

1 4 5
0 3

4 6
0 0 1

2

 λ− 1 4 5
0 λ− 3

4 6
0 0 λ− 1

2


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Summary: Geometry of Matrix

Vector: at origin
Addition: result of connecting vectors head to tail
Negative: reverse direction (rotate 180o)
Transpose: reflection of vector (across diagonal)
Multiplicative: linear projection/transformation
Inversion: reversing linear projection/transformation
Determinant: scaling of transformation/ signed ’area’ of parallelogram
Rank: minimal necessary dimension to represent collection of vectors

More Reading: https://www.gastonsanchez.com/matrix4sl/
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Differentiability

What: a function f(·) that maps D ⊆ Rn to R

f′(x0 ∈ D) ≡ lim
∥ϵ∥→0

f(x0 + ϵ)− f(x0)

∥ϵ∥

Meaning: change of function within x0

Note: derivative may not exist!
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Taylor Series

If a function f : Rn → R is m times continuously differentiable (i.e., f ∈ Cm) on
[a, b], then

f(b) = f(a) + b − a
1!

f(1)(a) + (b − a)2

2!
f(2)(a) + . . .+

(b − a)m−1

(m − 1)!
f(m−1)(a) + Rm

where,
f(k)(·) = ∇k f(x)

Rm = (b−a)m

m! f(m) (a + λ(b − a)) and λ ∈ [0, 1]

Note
Accuracy of series depends on number of terms
limm→∞ Rm = 0

∇ f(x) is called Gradient vector
∇2 f(x) or F(x) is called Hessian matrix
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Gradient Vector

Source. Chong & Zak. 2001 pp 68 [CŻ13]

What: first-order partial derivative at a given point
Gradient (∇f(x0)): the direction maximize increasing rate of f(·)

f(x1, y1) = 2 x1 − x2. ∇f(x) =
[
2
−1

]
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Hessian Matrix

Source. Chong & Zak. 2001 pp 68 [CŻ13]

What: second-order partial derivative; always symmetric matrix
Hessian (∇2f(x0)): the local curvature of of f(·)

f(x1, y1) = 2 x21 − sin(x2). ∇2f(x) =
[
4 0
0 − sin(x2)

]
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Local and Global Minimizer

Source. Chong & Zak. 2001 pp 72 [CŻ13]

local minimizer
Suppose that f : Rn → R is a function defined on F ⊂ Rn. A point x∗ ∈ F is a local minimizer of f(·) if
∃ ϵ > 0 such that f(x) ≥ f(x∗) for all x ∈ F\x∗ and ∥x − x∗∥ < ϵ

global minimizer
A point x∗ ∈ F is a global minimizer of f(·) if f(x) ≥ f(x∗) for all x ∈ F\x∗

COMP METH v2.00: unconstraint 23/ 43



Matrix Calculus Geometry Supplement

Optimal Condition

What: Is this point local optima?
First Order: ∇f(x∗) = 0

Second Order: ∇2f(x∗) is positive definite (for minimization)
Example: Check Optimality Conditions:

f(x1, x2) = 1
3x31 + 1

2x21 + 2x1 x2 + 1
2x22 − x2 + 9

∇f(x) =
[
x21 + x1 + 2x2
2x1 + x2 − 1

]
(x1 − 2)(x1 − 1) = 0 or x = {[2,−3]T, [1,−1]T}

∇2f(x) =
[
2x1 + 1 2

2 1

]
∇2f(xa) =

[
5 2
2 1

]
and ∇2f(xb) =

[
3 2
2 1

]
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Optimal VS Definite
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Convex Function & Concave Function

Source. Winston Section 11.3 pp 42 [Win22]
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Verify Convex & Concave Functions

f1(x) = ln(x), where S ∈ (0,∞)

concave function f ′′1(x) = −x−2

f2(x1, x2) = x31 + 3x1x2 + x22, where S ∈ R2

either convex nor concave

f ′′2(x1, x2) =

[
6x1 3
3 2

]

f3(x1, x2) = x21 + x22, where S ∈ R2

convex function
f′′3(x1, x2)

[
2 0
0 2

]
f4(x1, x2, x3) = −x21 − x22 − 2x23 + 1

2x1x2, where S ∈ R3

concave function because eigenvalue = [−1.5,−2.5,−4]
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Convex Function

Source. Chong & Zak. 2001 pp 42 [CŻ13]

Definition (Convex Function)
A function f(·) is convex on a convex set S if it satisfies

f (λ u + (1− λ)v) ≤ λ f(u) + (1− λ) f(v)

well-known: ea x for a ∈ R; xa for a ≥ 1; sum of convex function
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Verify First & Second Order Conditions

f1(x1, x2) = x21 + ex2 − 3x1 x2

∇f1(x) = [2x1 − 3x2, ex2 − 3x1]T

∇2f1(x) =
[
2 −3
−3 ex2

]
f2(x1, x2) = (x1 + x2) e−(x1+x2)

∇f2(x) =
[
−(x1 + x2) e−(x1+x2) + e−(x1+x2)

−(x1 + x2) e−(x1+x2) + e−(x1+x2)

]

∇2f2(x) =
[ ]
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Level Sets

f(x) = 100(x2 − x21)2 + (1 − x1)2 or Rosenbrock’s function

Source. Chong & Zak. 2001 pp 67 [CŻ13]

Definition (Level Set)
The level set is a function f : Rn → R at level c is the set of points

S = {x : f(x) = c}
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Special Matrix
Unit Vector A unit vector, ej, is a vector where the 1 appears in the jth

position and 0’s elsewhere.
Diagonal Matrix A square matrix whose off-diagonal elements are all equal to

zero. For example:

A =

a1,1 0 0
0 a2,2 0
0 0 a3,3


Identity Matrix A diagonal matrix in which all diagonal elements are equal to

1. An identity matrix of order m is designated as either Im or just
I. For example:

I3 =

1 0 0
0 1 0
0 0 1


Orthogonal Matrix A matrix in which all unit column vectors are

perpendicular to one others
source: [CŻ13]
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Special Matrix
Null or Zero Matrix A null matrix has all of its elements equal to zero. For

example: 0 =

[
0 0 0
0 0 0

]
Symmetric Matrix A symmetric matrix is one whose transpose and the matrix

itself are equal. That is A = AT. For example:

A =

1 2 3
2 6 4
3 4 9

 = AT

Augmented Matrix An augmented matrix is one in which rows or columns of
another matrix, of appropriate order, are appended to the original
matrix. For example:

A =

[
1 4
5 6

]
, b =

[
3
1

]
, A|b =

[
1 4

∣∣ 3
5 6

∣∣ 1

]
source: [CŻ13]
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Special Matrix

Lower/Upper Triangular A special sparse square matrix. For example:

L =

1 0 0
4 −3 0
1 1 3

 U =

2 1 4
0 −3 1
0 0 1


Null Space (matrix) The set vectors that orthogonal to rows of a given

matrix. N (A) = {p ∈ Rn : Ap = 0} For example:

A =

[
1 −1 0 0
0 0 1 1

]
, Ap = 0, p =


v1
v1
v2
−v2


source: [CŻ13]
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Diagonal Form of Matrix

Definition
Diagonal Form of Matrix If matrix A has n linearly independent eigenvectors, then it
can be diagonalize in SΛS−1 where S−1 is eigenvector matrix and Λ is eigenvalues
matrix.

Example: Each year 1
10 of the people outside BKK move in, and 2

10 of the
people inside BKK move out. What is the population at year k.[

yn+1

zn+1

]
=

[
0.9 0.2
0.1 0.8

] [
yn
zn

]

[
yk
zk

]
=

[
0.9 0.2
0.1 0.8

]k [y0
z0

]
=

(
S−1ΛS

)k
[
y0
z0

]
=

[
0.894 −0.707
−0.707 0.707

] [
1.0k

0.7k

] [
0.745 0.745
−0.471 0.942

] [
y0
z0

]
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Matrix Decomposition
What: processing original matrix A into multiplication of matrix with special
properties
Popular Decomposition:

LU Decomposition for compute determinant and find inverse

A = L U
[
4 3
6 3

]
=

[
1 0
1.5 1

] [
4 3
0 −1.5

]
QR Decomposition for solve SLE and linear regression

A = Q R
[
1 0 0
1 1 −2

]
=

−√
1
2

−
√

1
2

−
√

1
2

+
√

1
2

 −√
2 −

√
1
2

√
2

0
√

1
2

−
√
2


Single Value Decomposition for image transformataion

A = UΛVT
[
3 1
1 3

]
=

√ 1
2

√
1
2√

1
2

−
√

1
2

 [
4 0
0 2

] √ 1
2

√
1
2√

1
2

−
√

1
2


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Convex Sets

(a) convex set

(b) non-convex set

Source. Chong & Zak. 2001 pp 42 [CŻ13]

Definition (Convex Set)
Set is convex set if, for any elements u, v ∈ S λu + (1− λ)v ∈ S λ ∈ [0, 1]
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Example of Convex Sets

Definition: empty set, line segment, hyperplane, Rn

Properties:
scaling: If Θ is convex set and β is a real number, then βΘ is convex set
intersection If Θ1 and Θ2 are convex sets, then Θ1

∩
Θ2 is also convex

additive: If Θ1 and Θ2 are convex sets, then

Θ1 +Θ2 = {x : x = v1 + v2,v1 ∈ Θ1, v2 ∈ Θ2}

is also convex
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Results of Convex Function

Properties
Invert: convex function = - concave function
Preserve:

summation of convex functions is convex function
maximum value of convex functions is convex function

Trivial: linear function both convex and concave

Determine convex function
In 1D: f′′(x) > 0 for all x ∈ S
In general: ∇2f(x) > 0 for all x ∈ S

Hessian matrix must be positive-definite for all x ∈ S
Definition: xTQ x > 0 for all x, where Q is symmetric matrix
Sylvester’Criteria: all leading principle minors of Q are positive → all
eigenvalues are positive
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Sufficient Condition

What: Is this point local optima?
First Order: ∇f(x∗) = 0

Second Order: ∇2f(x∗) is positive definite (for minimization)
Example: Check Optimality Conditions:

f(x1, x2) = 1
3x31 + 1

2x21 + 2x1 x2 + 1
2x22 − x2 + 9

∇f(x) =
[
x21 + x1 + 2x2
2x1 + x2 − 1

]
(x1 − 2)(x1 − 1) = 0 or x = {[2,−3]T, [1,−1]T}

∇2f(x) =
[
2x1 + 1 2

2 1

]
∇2f(xa) =

[
5 2
2 1

]
and ∇2f(xb) =

[
3 2
2 1

]
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Verify First & Second Order Conditions

f1(x1, x2) = x21 + ex2 − 3x1 x2

∇f1(x) = [2x1 − 3x2, ex2 − 3x1]T

∇2f1(x) =

[
2 −3
−3 ex2

]

expr <- expression(x1^2+exp(x2)-3*x1*x2)
exprD1 <- expression(NA,NA)
exprD1[[1]] <- D(expr,"x1")
exprD1[[2]] <- D(expr,"x2")

exprD2 <- expression(NA,NA,NA,NA)
exprD2[[1]] <- D(D(expr,"x1"),"x1")
exprD2[[2]] <- D(D(expr,"x2"),"x1")
exprD2[[3]] <- D(D(expr,"x1"),"x2")
exprD2[[4]] <- D(D(expr,"x2"),"x2")

expr.all <- function(x1,x2){ }
body(expr.all) <- deriv3(expr,c("x1","x2"))
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Rate of Convergence

What: Does algorithm converge? If so, How fast?
Define: ek ≡ xk − x∗
Converge: limk→∞

∥ek+1∥
∥ek∥r = C

Example: Find the converge rate of these sequence:
Sq#1 2, 1.1, 1.01, 1.001, 1.0001, . . . , 1 + 10−k

x∗ = 1 and ek = xk − x∗ = 10−k

limk→∞
10−k−1

10−k = 1
10

Sq#2 4, 2.5, 2.05, 2.00060975, . . . , xk+1 = xk
2 + 2

xk

if x0 = 4 then x∗ = 2 and ek+1 = xk
2 + 2

xk
− 2 = 1

2xk
e2k

limk→∞
1

2xk
e2k

∥ek∥2 = 1
4
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Guaranteeing Convergence
Line Search: right directions & many steps

xk+1 = xk + γk dk so that f(xk + γk dk) < f(xk)

In general: f(x0) > . . . > f(xk) > . . . > f(x∗)

In other words: dT
k ∇f(x) < 0, ∀ k

In addition: γk > 0, ∀ k and
∑∞

k=1 γk = ∞
Trust Region: adjustable steps depending on results

Source. Nocedal & Wright. 1999 pp 66
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