ASSOCIATION

 $Oran\ Kittithree rapronchai^1$

 1 Department of Industrial Engineering, Chulalongkorn University Bangkok 10330 THAILAND

last updated: November 2, 2019

OUTLINE

Association Theory

2 Titanic Survival

WORKSHOP ASSOCIATION

Association Task

DEFINITION

Given a set of transactions, find rules that predict the occurrence of items based on the transaction

# Trans	ltems	Example of Association
1	{Bread, Milk}	$\{Diaper\} o \{Beer\ \}$
2	{Bread, Diaper, Beer, Eggs}	$\{Milk,Bread\} o \{Eggs,Coke\}$
3	{Milk, Diaper, Beer, Coke}	$\{Beer,\ Bread\} o \{Milk\ \}$
4	{Bread, Milk, Diaper, Beer}	
5	{Bread, Milk, Diaper, Coke}	

TERMINOLOGY

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

- Itemset: a collection of one or more items, e.g. {Milk, Bread, Diaper}
- k-itemset: an itemset that contains k items
- Association Rule: an implication of itemset $X \to Y$, e.g., $\{ Milk, Diaper \} \to \{ Beer \}$
- **Support count** (σ) : frequency of occurrence of an itemset, e.g, $\sigma(\{\text{Milk}, \text{Bread}, \text{Diaper}\}) = 2$

Mathematics of Association Rule

• **Support** (s): fraction of transactions that contain an itemset.,e.g., $s(\{Milk, Diaper\} \rightarrow \{Beer\}) = \frac{2}{\pi}$

$$s(A \rightarrow B) = P(A \cup B)$$

• Confidence (c): how often items in Y appear in transactions that contain X, e.g., $c(\{Milk, Diaper\} \rightarrow \{Beer\}) = \frac{\sigma(\{Milk, Diaper, Beer\})}{\sigma(\{Milk, Diaper\})} = 2/3$

$$c(A \rightarrow B) = P(B|A)$$

• **Lift** (/): performance of a targeting association rule at predicting cases, e.g., $I(\{Milk, Diaper\} \rightarrow \{Beer\}) = \frac{2}{5}/\frac{3}{5}\frac{\pi}{5} = \frac{10}{9}$

$$I(A \to B) = \frac{P(A \cup B)}{P(A)P(B)}$$

SUPPORT AND CONFIDENCE

# Trans	Items	Assoc. Rules	$s(\cdot)$	$c(\cdot)$	$I(\cdot)$
1	{Bread, Milk}		0.4	0.67	1.11
2	{Bread, Diaper, Beer, Eggs}		0.4	0.50	1.25
3	{Milk, Diaper, Beer, Coke}		0.4	0.50	0.83
4	{Bread, Milk, Diaper, Beer}		0.4	0.67	1.11
5	{Bread, Milk, Diaper, Coke}		0.4	1.00	1.25
			0.4	0.67	0.83

OBSERVATION

All rules are based on {Milk, Diaper, Beer} with same support, but difference confidence

SUPPORT AND CONFIDENCE

# Trans	Items
1	{Bread, Milk}
2	{Bread, Diaper, Beer, Eggs}
3	{Milk, Diaper, Beer, Coke}
4	{Bread, Milk, Diaper, Beer}
5	{Bread, Milk, Diaper, Coke}

Assoc. Rules	$s(\cdot)$	$c(\cdot)$	$I(\cdot)$
$\{Beer\} o \{Milk,Diaper\}$	0.4	0.67	1.11
$\{Diaper\} o \{Milk,Beer\}$	0.4	0.50	1.25
$\{Milk\} o \{Diaper,Beer\}$	0.4	0.50	0.83
${Milk}, Diaper \to {Beer}$	0.4	0.67	1.11
$\{Milk,Beer\} o \{Diaper\}$	0.4	1.00	1.25
$\{Diaper,Beer\} o \{Milk\}$	0.4	0.67	0.83

OBSERVATION

All rules are based on {Milk, Diaper, Beer} with same support, but difference confidence

Processes in Association

- Frequent Generation: list all itemsets whose $s(\cdot) \geq \underline{S}$
- Rule Generation: generate high confidence rules that exceeds \underline{C} from frequent itemsets

Frequent Generation

Rule Generation

FREQUENCY GENERATION

Given transaction \mathbb{T} , find all non-empty itemset $L\subset \mathbb{T}$ satisfies the minimum support \underline{S}

- Brute Force: check all combination, 2^M
- Apriori: check a lower 'cardinal' before higher combination
- ECLAT: separate item and count transaction ID

Apriori Algorithm

```
given minimum support
```

if counts of subset exceed minimum support then

extend a subset by adding an available element

else

ignore a subset

Example of Apriori at Minimal Support = 3

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

level	item	count	
1	{Bread}	4	
	{Coke}	2	ignore
	{Milk}	4	
	{Beer}	3	
	{Diaper}	4	
	{Eggs}	1	ignore
	$\{Bread,Milk\}$	3	
2	$\{Bread, Beer\}$	2	ignore
	$\{Bread, Diaper\}$	3	
	{Milk,Beer}	2	ignore
	${Milk, Diaper}$	3	
	$\{Beer, Diaper\}$	3	
3	{Bread,Milk,Diaper}	3	

EXAMPLE OF ECLAT

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Bread	Coke	Milk	Beer	Diaper	Eggs
1	3	1	2	2	2
2	5	3	2	3	
4		4	4	4	
5		5		5	

• k-itemset: compute by k-1 itemset

• Advantage: very fast support counting

• Disadvantage: temporary TID-lists may become too large for memory

Rule Generation

Given itemset L, find all non-empty subsets $\{f\} \rightarrow \{I\}$ where $\{f,I\} = L$ satisfies the minimum confidence C

- **Example:** rule generation of $\{A, B, C, D\}$ are $\{A\}$ → $\{B, C, D\}$, $\{A, B\}$ → $\{C, D\}$, $\{A, B, C\}$ → $\{D\}$, $\{B\}$ → $\{A, C, D\}$, $\{B, C\}$ → $\{A, D\}$... $\{D\}$ → $\{A, C, D\}$
- In general: there are $2^{|L|} 2$ # why?
- How to efficiently generate rules?
 - Non-Monotonic of group: $c(ABC \rightarrow D) \ngeq c(AB \rightarrow D)$
 - Monotonic of series $c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$

TITANIC SURVIVAL

Rule Gen.

Data:

Visualize

```
require(arulesViz)
plot(rules.cust)
plot(rules.all, method = "grouped")
plot(rules.sorted, method = "graph")
```

require(arules)

TBA

• Package: 'DMwR'

Code: rScript

• Instruction: step-by-step follow up

Goals:

•

Transaction Analysis with Groceries

Greceries:

```
require(arules)
data("Groceries")
inspect(head(Groceries))
sort(itemFrequency(Groceries),T)[1:20]
itemFrequencyPlot(Groceries,topN=20,type="absolute")
itemFrequencyPlot(Groceries,topN=20,type="relative")
```

Rule Gen.

```
grocery.rules <- apriori(Groceries,parameter = list(supp=0.001,conf=0.8))
options(digits = 3)
inspect(grocery.rules[1:5])</pre>
```

```
orders <- data.frame(
    transactionID = sample(1:500, 1000, replace=T),
    item = paste("item", sample(1:50, 1000, replace=T), sep = "")
)
orders <- unique(orders)

orders.temp <- as.matrix(xtabs(-transactionID+item,data=orders))
head(orders.temp)
orders.mat <- matrix(NA,nrow=dim(orders.temp)[1],ncol=dim(orders.temp)[2],)
orders.mat[orders.temp == 1] <- T
orders.mat[orders.temp == 0] <- F
dimnames(orders.mat) <- dimnames(order
```

Gen Trans

set. seed (101)

head(orders.mat)