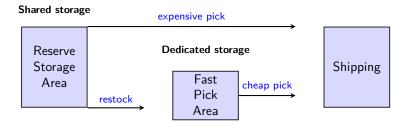
LECTURE 07 WAREHOUSING DESIGN AND DESIGN OF FAST-PICK AREA

Oran Kittithreerapronchai¹

¹Department of Industrial Engineering, Chulalongkorn University Bangkok 10330, THAILAND

last updated: August 5, 2025

OUTLINE


- 1 Introduction to Fast-Pick Area
- 2 How much space should be allocated to each SKU?
- 3 WHICH SKUS SHOULD BE IN FAST-PICK AREA?
- 4 What is the 'right' size of the fast-pick area?
- 5 BEYOND FLUID MODEL: LIMITATION & GENERALIZATION

source: General references [BH09, Mul94, Fra02, ?]

What is a fast-pick area?

- What : compact & picking efficiently warehouse
- Idea: moving 'small'& 'popular' SKUs to gain efficiency
- Pro: reduce searching & traveling time
- Con: double handling, additional refilling, additional equipment
- Example: Avon cosmetic, Office Depot ink carriages, Gums shelve casher

CONCEPT OF FAST-PICK AREA

source: Bartholdi, J. & Hackman, S. 2009. [BH09]

QUESTIONS FOR FAST-PICK AREA

- 1) What are the optimal total spaces of the fast-pick area?
- 2) Which SKUs should be put in the fast-pick area?
- 3) How much space each SKU should be allocated?

Trade-off between additional restocking & inexpensive picking with **fluid** model [HP90]

Assumptions

- Each piece is very 'small'
- Restocking cost depends on # of restock (c_r)

HOW MUCH SPACE FOR EACH SKU?

Notations

 $\mathcal{I} = \text{set of SKUs in warehouse}$

 $\mathcal{F}=\mathsf{set}$ of SKUs in fast pick area, $\mathcal{F}\subseteq \mathcal{I}$

 f_i = flow of SKU i within one period of time (m^3 /time)

 v_i = assigned volume of SKU i in fast-pick area (m^3)

V = total available volume in the fast-pick area (m^3)

- Decision variable: v_i
- Constraints: $\sum_{i} v_i \leq V$
- **Objective:** min restocking cost = min # restocking
- # restock: $\frac{\text{flow}}{\text{assigned volume}}$ or $\frac{f_i}{v_i}$ for SKU i

THREE POPULAR POLICIES

Assuming that \mathcal{F} is given, then total restock costs:

$$\min z = c_r \sum_{i \in \mathcal{F}} \frac{f_i}{v_i}$$

s.t.

$$\sum_{i \in \mathcal{F}} v_i \qquad \leq V$$

Three popular policies

- Equal space: each SKU is assigned equal space
- Equal frequency: each SKU will be refilled equal frequency
- Optimal: ???

EXAMPLES

The annual sale quantities of SKUs A & B are $90~\&~160 \it{m}^3$, respectively. What are numbers of restocks of each SKU, if total volume in FPA is 50 \it{m}^3

- A) each SKU get $25m^3$
- B) SKUs A & B get $18 \& 32m^3$, respectively
- C) SKUs A & B get 21.43 & 28.37 m^3 , respectively

	A) space	B) frequency	C) customize
space to SKU (v_A, v_B)	(25, 25)	(18, 32)	(21.43, 28.37)
restock to SKU	(3.6, 6.4)	(5.0, 5.0)	(4.2, 5.6)
total restock	10	10	9.8

- # restock of equal space = # restock equal frequency
- How to compute optimal policy (i.e., customize)

What Size

Why equal space = equal time?

- What: each SKU is assigned equal space in fast-pick area
- Space: $v_1 = v_2 = ... = v_n \to \frac{V}{r}$
- # Restock: $\frac{f_i}{V} = \frac{n f_i}{V}, \forall i \in \mathcal{F}$
- Total restocks: $\sum_{i \in \mathcal{T}} \frac{n f_i}{V} = \frac{n}{V} \sum_{i \in \mathcal{T}} f_i$
- What: each SKU will be refilled equal time/frequency in fast-pick area
- Space: $v_i = \frac{f_i}{f_i} v_1$ $V = \sum v_i = \frac{v_1}{f_i} \sum f_i$
- # Restock: $\frac{f_1}{V_1} = \frac{f_2}{V_2} = \ldots = \frac{f_n}{V_n} = \alpha$

$$v_i = rac{f_i}{lpha}$$
 Hence, $\sum_{i \in \ \mathcal{F}} v_i = \sum_{i \in \ \mathcal{F}} rac{f_i}{lpha} = V$

• Total restocks: $\sum_{i \in \mathcal{F}} \frac{f_i}{v_i} = n\alpha = \frac{n}{V} \sum_{i \in \mathcal{F}} f_i$

OPTIMAL SPACE RATIO = $\frac{\sqrt{\text{FLOW}_i}}{\sum_{j \in \mathcal{F}} \sqrt{\text{FLOW}_j}}$

$$\min z = C_r \left(\frac{f_a}{v_a} + \frac{f_b}{v_b} \right)$$
s.t.
$$v_a + v_b \ge V$$

Set constraint binding

$$C_r \left(\frac{f_a}{v_a} + \frac{f_b}{V - v_a} \right)$$

Apply FOC, i.e., $\frac{\partial}{\partial v_2}z = 0$

$$C_{r} \left(-\frac{f_{a}}{v_{a}^{2}} + \frac{f_{b}}{(V - v_{a})^{2}} \right) = 0$$

$$\frac{f_{a}}{v_{a}^{2}} = \frac{f_{b}}{(V - v_{a})^{2}}$$

$$v_{b} = \frac{\sqrt{f_{b}}}{\sqrt{a}} v_{a} = \frac{\sqrt{f_{b}}}{\sqrt{a} + \sqrt{f_{b}}} V$$

SUMMARY

	Equal time	Equal space	Optimal
space to SKU i	$\frac{f_i}{\sum_{j\in \mathcal{F}} f_j} V$	V/n	$\frac{\sqrt{f_i}}{\sum_{j\in\ \mathcal{F}}\sqrt{f_j}}V$
restock to SKU i	$\frac{1}{V}\sum_{j\in\mathcal{F}}f_j$	$\frac{n f_i}{V}$	$\frac{\sqrt{f_i}}{V}\sum_{j\in\ \mathcal{F}}\sqrt{f_j}$
total restock	$\frac{n}{V}\sum_{j\in\mathcal{F}}f_j$	$\frac{n}{V} \sum_{j \in \mathcal{F}} f_j$	$\frac{1}{V}(\sum_{j\in\mathcal{F}}\sqrt{f_j})^2$

EXAMPLE 2: SPACE FOR EACH SKU

A warehouse manager considers to put three items, i.e., SKUs A, B, & C, into a newly develop fast-pick area. The historical data of these items are listed as follow:

SKU	flow (f_i)
Α	$4m^3$ per year
В	$2m^3$ per year
C	$1 \it{m}^3$ per year

If the total storage space of fast-pick area is $0.6m^3$, what are space & number of restock of each SKU if he implements (a) optimal policy, (b) equal time policy, & (c) equal space policy.

SOLUTIONS TO EXAMPLE 2

Space

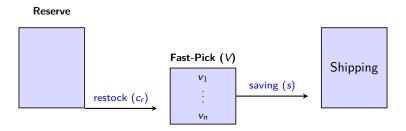
	Equal time	Equal space	Optimal
SKU A	$\frac{4}{4+2+1}0.6$	0.2	$\frac{\sqrt{4}}{\sqrt{4}+\sqrt{2}+\sqrt{1}}0.6$
SKU B	$\frac{2}{4+2+1}0.6$	0.2	$\frac{\sqrt{2}}{\sqrt{4}+\sqrt{2}+\sqrt{1}}$ 0.6
SKU C	$\frac{1}{4+2+1}0.6$	0.2	$\frac{\sqrt{1}}{\sqrt{4}+\sqrt{2}+\sqrt{1}}$ 0.6

Restock

	Equal time	Equal space	Optimal
SKU A	11.66	20.0	14.71
SKU B	11.66	10.0	10.42
SKU C	11.66	5.0	7.35
Total	34.98	35.0	31.48

WHICH SKUS IN FAST-PICK AREA?

- Possible SKU in fast pick: $2^{|\mathcal{I}|}$ if \mathcal{I} is set of all SKUs
- Reality Check: two extremes case of fast-pick area (\mathcal{F})


```
\mathcal{F} = \emptyset imply no saving from fast-pick area \mathcal{F} = \mathcal{I} too many activity (both pick & restocks)
```

• Why 'small' & 'popular' SKUs?:

```
POPULAR generate high # pick
SMALL reduce # restock
```

- benefit per pick = difference unit picking cost of fast pick & reserve
- For each SKU in fast pick area, benefits > restock costs

FLUID MODEL

source: Bartholdi, J. & Hackman, S. 2009. [BH09]

- Total benefits: \sum (saving \times pick of each SKU)
- Total costs: \sum (restock cost \times # restock of each SKU)

FLUID MODEL: ADDITIONAL NOTATIONS

- s = pick saving when a SKU move to fast-pick area (\$/pick)
- p_i = picking rate of SKU i (pick/time)
- c_r = restocking cost at the fast-pick area (\$/restock)
- Variable: select set of SKUs
- Constraint: N/A
- Objective: $\max \sum [benefits restock costs]$

$$\max \sum_{i \in \mathcal{F}} \left[s p_i - c_r \frac{f_i}{v_i} \right]$$

WHICH SKU SHOULD BE IN FAST PICK AREA

Total Net Benefit
$$=\sum_{i\in\mathcal{F}}\left[s\,p_i-c_r\frac{f_i}{v_i}\right]$$

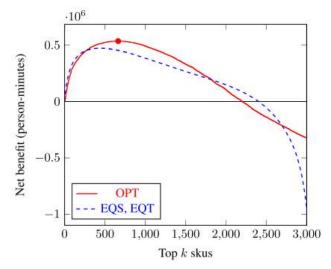
Analysis: each SKU in fact pick, say k: Its benefit must be ≥ 0 , say ϵ

Net Benefit_k =
$$s p_k - c_r \frac{f_k}{v_k}$$

= $s p_k - c_r \frac{f_k}{\sqrt{f_k}} V$
= $s p_k - c_r \frac{(\sqrt{f_k}) \cdot (\sum_{j \in \mathcal{F}} \sqrt{f_j})}{V} = \epsilon$
 $\frac{p_k}{\sqrt{f_k}} = c_r \frac{\sum_{j \in \mathcal{F}} \sqrt{f_j}}{s V} + \epsilon \frac{\sqrt{f_k}}{s}$

RESULTS FROM FLUID MODEL

selecting SKU to Fact-Picking area


- Parameters are: $\sqrt{\text{flow}}$ & pick, particularly $\frac{\text{pick}}{\sqrt{\text{flow}}}$
- Term $\frac{\text{pick}}{\sqrt{\text{flow}}}$ is called viscosity

Hence

THRESHOLD SKU i is in fast-pick area if $\frac{p_i}{\sqrt{f_i}} > \frac{C_r}{sV} \sum_{j \in \mathcal{F}} \sqrt{f_j}$

PRACTICAL adding SKU in descending order of viscosity until total net benefit stops increases

NET BENEFITS COMPARISON

source: Bartholdi, J. & Hackman, S. 2009. [BH09]

EXAMPLE 3: WHICH SKU IN FAST PICK AREA

From the previous example, the historical pick data are follow:

SKU	pick (p_i)	flow (f_i)	viscosity $\left(\frac{p_i}{\sqrt{f_i}}\right)$
Α		$4 \it{m}^3$ per year	10.0
В		$2 \it{m}^3$ per year	21.2
C	$25\ { m times}$	$1 \it{m}^3$ per year	25.0
D	$15\ {\rm times}$	$2 \it{m}^3$ per year	10.6

If each restock take 5 minutes & moving item into a fast-pick area takes traveling & searching time 2 minutes per each pick. As a logistics analysis, what is your recommendation to a warehouse manager choice of SKUs.

Example 3: Calculating Saving

Case 1: $F = \{C\}$

SKU	V _i	saving $(s \cdot p_i)$	restock $(c_r \cdot \frac{f_i}{v_i})$	benefit (minutes)
С	0.600	(25)(3)	(5)(1)/(0.6)	66.67

Case 2: $\mathcal{F} = \{C, B\}$

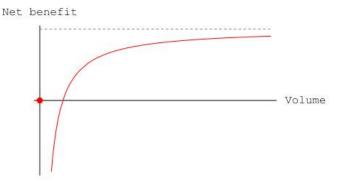
SKU	Vi	saving $(s \cdot p_i)$	restock $(c_r \cdot \frac{f_i}{v_i})$	benefit (minutes)
С	0.250	(25)(3)	(5)(1)/(0.25)	55.00
В	0.350	(30)(3)	(5)(2)/(0.35)	61.43

Case 3: $\mathcal{F} = \{C, B, D\}$

		· - / ·)		
SKU	Vi	saving $(s \cdot p_i)$	restock $(c_r \cdot \frac{f_i}{v_i})$	benefit (minutes)
С	0.156	(25)(3)	(5)(1)/(0.156)	42.95
В	0.222	(30)(3)	(5)(2)/(0.222)	44.95
D	0.222	(15)(3)	(5)(2)/(0.222)	-0.05

Example 3: Saving List

\mathcal{F}	$\sum_{j} \sqrt{f_{j}}$	v	benefits (s)
Ø	0.00	0	0
{ <i>C</i> }	1.00	$\{.6\}$	66.6
{ <i>C</i> , <i>B</i> }	2.41	$\{.250, .350\}$	116.43
$\{C, B, D\}$	3.83	$\{.156, .222, .222\}$	87.85
$\{C, B, D, A\}$	5.83	$\{.104, .145, .145, .206\}$	


FACTORS RELATED TO DECISION

- Warning: 'fast-pick area' is not for every warehouse
- **Space:** large space → more SKU but less saving
- Equipments: benefits, capacity, investmet
- Pickers: management (fixed or circulated pickers), payment, restocker

Determine size of fast pick area

- Method: trial-and-error (smart search)
- Rule of thumb: fast pick space $< \frac{1}{4}$ of storage space
- Issue: different saving in each size/zone,

NET BENEFITS OF USING FAST PICK AREA

source: Bartholdi, J. & Hackman, S. 2009. [BH09]

REAL WORLD FAST-PICK AREA

- Discrete quantity: Real SKU has shape & size, not fluid scale-able volume
- Pick pattern: #pick pattern → uniform pattern nor equally distributed
- Pick relationship: Few SKUs must pick together, not independent pick
- Equipment constraint: multiple picking method, no fractional slot
- Parameter: different pick saving and/or restock cost [KM08]

GENERALIZATION: IMPROVING MODEL

• Minimum/Maximum quantity: $\underline{v}_A \leq v_A \leq \overline{v}_A$

if
$$\frac{\sqrt{f_A}}{\sum_j \sqrt{f_j}} V > \overline{v}_A$$
, then $v_A = \overline{v}_A$
if $\frac{\sqrt{f_A}}{\sum_j \sqrt{f_j}} V < \underline{v}_A$, then $v_A = \underline{v}_A$

- Affiliated picking: SKUs A & B must be together $(p_A = p_b = p_{A,B})$ calculate $\frac{p_{A,B}}{\sqrt{f_{A,B}}}$
- Unit load: Fluid Model breaks down 0/1/All rule

PROBLEMS

Suppose you have 2 cubic meters available in flow rack, which is restocked from a distant reserve area, & you have just added three SKUs, with projected activity as follows.

SKU	picks/month	pieces/month	pieces/case	$m^3/case$
Α	1000	2000	200	0.2
В	300	1200	6	0.7
C	250	4000	10	0.1

- Suppose you have decided to put all three SKUs in flow rack. How much space should be allocated to each SKU to minimize number of total restock?
- Based on the previous question, how often must each SKU be restocked?
- Assume that it costs an average of \$0.15 per pick from flow rack but costs about \$1/restock. The alternative is to pick from reserve, where each pick costs about \$0.25. Which SKUs should put in the flow rack? & How much space should they be allocated?

REFERENCE

[BH09] J. J. Bartholdi and S. T. Hackman.

Warehouse & distribution science.

Suply chain and logistics institute, Georgia institute of technology, 2009.

[Fra02] E. Frazelle.

World-class warehousing and material handling.

McGraw-Hill Professional, 2002.

[HP90] S.T. Hackman and L.K. Platzman.

Near-optimal solution of generalized resource allocation problems with large capacities.

Operations Research, 38(5):902–910, 1990.

[KM08] C. Kong and D. Masel.

Methods for design and management of a fast-pick area in a warehouse.

In Proceeding of the 2008 industrial engineering research conference, pages 1367–1372, 2008.

[Mul94] D.E Mulcahy.

Warehouse distribution and operations handbook.

McGraw-Hill New York. 1994.