LECTURE 03 EQUIPMENTS IN WAREHOUSE:

Oran Kittithreerapronchai¹

¹Department of Industrial Engineering, Chulalongkorn University Bangkok 10330 THAILAND

last updated: August 5, 2025

OUTLINE

- 1 Unitizing equipment
- 2 STORAGE & RETRIEVAL EQUIPMENTS
- 3 Material Handling equipments
- 4 Positioning equipments
- 5 IDENTIFICATION & COMMUNICATION EQUIPMENT

source: General references [BH09, Mul94, Fra02, ?]

BENEFITS OF EQUIPMENT

- Reduce cost (labor + space)
 - \bullet enhance space utilization (rack \rightarrow vertical dimension, denser safer storage)
 - ullet allow for more efficient order-picking (WMS ightarrow zone/wave picking)
- Enhance responsiveness (speed + cycle time)
 - Increase throughput (sorter → automated sorting & transfer)
- Maintain qualities of products & operations
 - provide efficient ways for identification (e.g., bar code, RF terminal)
 - provide safe & secure material handling (e.g., man-on reach truck)
 - establish & maintain a controlled environment (e.g., access control)

CONCEPT OF UNITIZING EQUIPMENT

- Idea: standardizing SKUs \rightarrow easy to move & collect
- Where: supplier site, receiving & shipping area
- Issues: installation cost, volume, size & shape (7Eleven tote, Lotus cool box)
- Example: pallet, wrapping machine

Pallet & co

- Idea: creating unit load by std platform
- Issues: circulation, size, form

Comparison of Pallet Materials

source: https://www.palltechpallets.co.uk

Material	Durability	Repairable	Env. Impact	Application
Wood	med	yes	recyclable	common
Pressed Wood	med	yes	recyclable	printing, tiber
Fiberboard	low	no	recyclable	paper, garment
Plastic	high	no	closed loop	cement, automotive
Metal	high	depends	closed loop	grocery, food, military

SHAPE OF PALLET

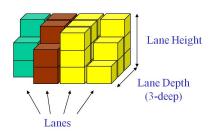
Standard Pallets

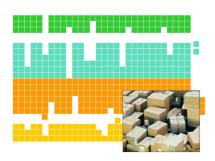
ISO PALLETS 1000 mm \times 1200 mm US PALLET 40 in \times 48 in (1016 mm \times 1219 mm) or 42 in \times 48 in EURO PALLET 800 mm \times 600 mm & 800 mm \times 1200 mm

OTHER PALLETS

OTHER INDUSTRIAL PACKAGE

OTHER TYPE OF UNIT LOAD

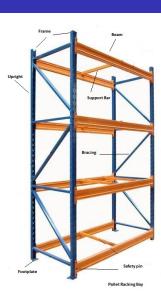



STORAGE & RETRIEVAL EQUIPMENT

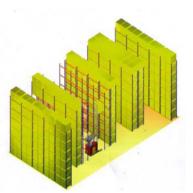
- Idea: cubic space saving & efficient retrieving
- Where: storage & picking area
- Issue: standardization, FIFO, safety, ergonomic
- Example: floor stack, selective rack (single deep & double deep), carrousel

FLOOR STACK: NO EQUIPMENT

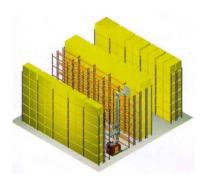




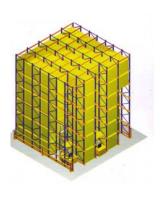
- Idea: stack pallets up-height
- Pro: zero investment, multiple pallets per SKU, high inventory over
- Con: honeycombing problem, stability
- Issue: stack-ability, stack height, aisle width


Unit load

Industrial rack


SINGLE-DEEP RACK

- Idea: a pallet rack that has a single storage space
- Pro: each pallet is independently accessible
- Con: too many aisles \rightarrow inefficient space utilization


Double-Deep Rack

- Idea: a pallet rack that has a double storage space
- Important: Each lane dedicated to one SKU (one pallet or two pallets)
- Pro: Less aisle space required (upto 50% savings in aisle space)
- Con: More work and/or specialized equipment for retrieving

Drive-in & Drive-through rack

Unit load

- Idea: forklift can drive in the structure
- Important: \exists two aisles \rightarrow drive-through, \exists inclined rollers \rightarrow push-back
- Pro: maximize space utilization
- Con: accidents, inefficient of vertical dimension

Comparison of unit-load equipments

	Block storage	Selective	Double deep	
Installed (USD/unit load)		150	150	
Footprint	_	large	medium	
Storage density	high	low	medium	
Throughput	high	high	medium	
Space use	very good	fair	good	
Load accessibility	poor	excellent	fair	
Rotation of loads	LIFO	FIFO	LIFO	
Number of aisles	few	many	medium	
Unit loads deep/opening	8-10	1	2	
Utilization factor	60%	85%	80%	
Probability of damage	high	low	low	
Security	poor	good	good	

source: Malmborg, C. et al. 1998 [PMP+98]

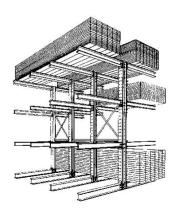
Unit load

PALLET FLOW RACK

- Idea: a pallet rack that always brings next pallet
- Important: separate picking & put-away
- Pro: high pick density, FIFO
- Con: space utilization, high cost

GRAVITY FLOW RACK

- **Idea:** a rack that **always** brings next case/carton (200+ picks/hr)
- Pro: high pick density, FIFO
- Con: space utilization, high cost

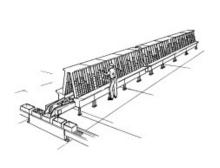

BIN SHELVE

- Idea: storing cabinet for case/carton
- Pro: cheap,
- Con: single access, ID, low pick density, LIFO

CANTILEVER RACK

- Idea: structure with protruding beams to support items
- Pro: suitable for irregular/long shaped product
- Con: strength, balancing, pallet >> carton/piece

CAROUSELS



• Idea: automatic storage/retriving equipment (100-200 pick/hr)

• Pro: no searching, security

Con: single access

A-FRAME

- Idea: combine picking, storing & packing with automation (300+ pick/hr)
- Pro: high pick density for small & similar SKUs ready pack
- Con: double handling, filling machine

OTHER AUTOMATIC STORAGE EQUIPMENT

• Idea: combine put-away, picking, storing

• Pro: high hight, little labor

• Con: investment, may double handling

SMALL STORAGE ITEM EQUIPMENTS

Unit load

MATERIAL HANDLING EQUIPMENT

- Idea: moving items/SKUs
- Where: everywhere
- Issue: reach, automation, space footprint, congestion
- Type: Manual, Conveyor, Sorter, Crane, AGV, Industrial trucks
- Example: hand truck, forklift, conveyor

Counter Balance forklift truck

• Idea: unit-load mover equipped with motor & hydriodic

• Pro: very useful

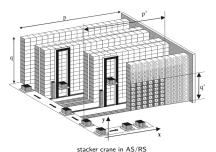
• Con: wide turn \rightarrow wide aisle

MANUAL EQUIPMENT

- Idea: manual equipment for moving pallet or tote (no driving cab)
- Pro: small, cheap
- Con: more manual, fixed height (may not apply for block pallet)

Industrial Trucks

Reach Truck


VNA truck

- **Idea:** moving pallet from $A \rightarrow B$ with power
- Type: turret, footprint, drivable, # pallets
- Pro: save time & labor
- Con: price, storage equipment

Crane

bridge crane

Idea: moving items overhead

- Pro: flexible shape/size
- Con: restricted area, congestion with others

OTHERS MHE: RAIL

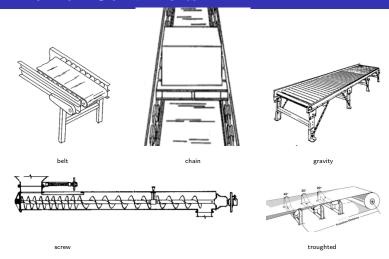
AGV

• Idea: moving items on fixed paths usually as loop

• Pro: eliminate worker

• Con: restricted area, investment

Conveyor


• What: automatic moving 'regular' shape pallet

• Pro: free labor

• Con: large moving huge std. size, fixed paths

Variation of Conveyors

Unit load

• Selection: materials, slope, price, weight

SORTER

cross belt

tilt tray

sliding shoe

- Idea: automatically distribute product without picking
- Type: weight, dimension, speed & throughput, chute
- Pro: accuracy, slave
- Con: price, installation, handling

SPACE REQUIREMENT FOR POPULAR EQUIPMENTS

	Design					Specification		
No.	Storage	Handling	Pallet	Pallet	Slot	Aisle	Avg.	
	(\$/pallet)	(\$/unit)	Depth	Height	Width	Width	Utiliz.	
1	Floor (\$0)	Forklift (\$22k)	6	3	1.35	3.6	0.30	
2	Drive-In (\$150)	Reach (\$28k)	6	5	1.35	3.6	0.90	
3	Double Deep (\$55)	Deep Reach (\$35k)	2	5	1.25	3.0	0.75	
4	Push-Back (\$155)	Reach (\$28k)	4	5	1.25	2.7	0.85	
5	Selective (\$50)	Reach (\$28k)	1	5	1.25	2.7	0.80	

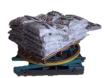
QUESTIONS

Unit load

- Calculate area requirements for each option if a particular warehouse, on average, needs 3000 pallet positions
- Propose a layout if the width and height of a storage area of this warehouse are 36m. and 20m.

source: Napolitano, M. et al. 2003 [NG94].

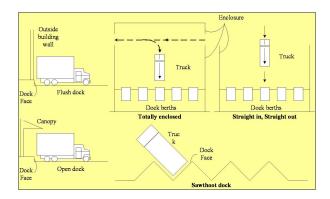
Positioning equipment



- Idea: making loading & unloading easier
- Where: receiving & shipping
- Issue: weight, layout (blind spot)
- Example: dock door, dock leveler, staging area

Positioning ID & Comm

DOCK DOORS

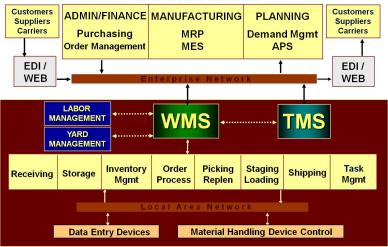

manipulator

stair

DOCK AREA

Unit load

IDENTIFICATION EQUIPMENT



- Idea: speeding receiving & shipping
- Where: receiving & shipping
- Issue: integration with system
- Example: RFID, bar code reader, magnet

ERP/WMS/TMS

Unit load

ENTERPRISE SYSTEM

source: Brett Peters. "Collect-Industry Council on Material Handling Education"

BAR CODE SCANNER & RF TERMINAL

EQUIPMENTS SELECTION

• Finance: IRR, payback period, b/c ratio, terms (rent/loan/lease & lead time)

- Product. itself:
 - Physical: material stage, std. dimension, weight
 - condition: temperature, shaded, traceability, moisture, sterilizing
 - possible defect: fragile, bend/compress/stack/roll-able
 - hazard: flammable, oxidizable, smell, corrosive,
- System: requirement (TH, CT, policy, scale-ability, priority), applicable to workers and system
- Material: physical appearance & property, quantity
- Restriction: area, power availability, door size, compliment to other MHE
- Maintenance: spare part, training program, SLA
- Other: prone to accident, customer, industry standard, technology

USEFUL INFORMATION

Material Handling

- Material Handling Taxonomy: http://www.mhia.org/industrygroups/ cicmhe/resources/mhe tax.htm
- Material Handling Pictures: https://www.cirrelt.ca/mhmultimediabank/

Warehouse Tours

- Interactive Tour: http://www.roodbergen.com/warehouse/
- Warehouse Science: http://www2.isye.gatech.edu/jjb/wh/sites/sites.html

COVID-19 AND MHE

Opportunity

- Investment: labor shortage/ less crowded / higher wage / lack of 2^{nd} line mgt \rightarrow better ROI
- Business: online+omni+onlive channels/ idea sandbox + catalyst /less market for fresh → development

Threats & Risks

- **Fluctuation:** bullwhip effect/ future trend (ever-fast changing industry)/ (peak VS off-peak)
- Maintenance: cost of PPE/ overseas MRO & part/

PROBLEMS

- 1. Why does a **single-deep rack** accommodate FIFO & FEFO policy, but not **double deep rack**?
- 2. Why floor stack is more suitable for a unit load fast-moving item than double-deep rack?
- 3. Compare similarities & differences of the following equipments
 - selective rack & cantilever rack
 - drive-in rack & drive-through rack

SUMMARY:

- Equipment helps to reduce storage required, to improve efficiency, to protect condition of products
- Main types of equipment are:
 - Unitload: forming larger unit for easy handling or storage, e.g., pallet, tote
 - Storage: providing storage and address, e.g., rack, bin shelf
 - Handling: providing speed or scale to travel, e.g., forklift,
 - Positioning: assisting with activity, e.g., dock, arm,
 - Communication: providing info how to work, e.g. WMS, barcode,

REFERENCE

Unit load

[BH09] J. J. Bartholdi and S. T. Hackman.

Warehouse & distribution science.

Suply chain and logistics institute, Georgia institute of technology, 2009.

[Fra02] E. Frazelle.

World-class warehousing and material handling.

McGraw-Hill Professional, 2002.

[Mul94] D.E Mulcahy.

Warehouse distribution and operations handbook.

McGraw-Hill New York, 1994.

[NG94] M. Napolitano and JE Gross.

The Time, Space & Cost Guide to Better Warehouse Design: A Hands-on Guide to Help You Improve the Design and Operations of Your Warehouse Or Distribution Center.

Distribution Center Management, 1994.

[PMP+98] Brett A Peters, Charles Malmborg, Glenn Petrina, Dave Pratt, and Don Taylor.

An introduction to material handling equipment selection.

College-Industry Council on Material Handling Education (CICMHE), 1998.