WAREHOUSING MANAGEMENT: CONCEPTS & TOURS Oran Kittithreerapronchai¹ ¹Department of Industrial Engineering, Chulalongkorn University Bangkok 10330, THAILAND last updated: June 7, 2025 ### OUTLINE - WAREHOUSING BASIC CONCEPTS - 2 Basic concept of warehousing activities - 3 Equipment typically found in a Warehouse - **1** Typical Warehouse Layout - WAREHOUSE INTUITION - Key Performance Index - 6 TYPICAL CHALLENGES IN WAREHOUSE source: General references [BH09, Mul94, Fra02, Kit18] # Warehouse & Logistics/Supply Chain - Warehouse ∈ Supply Chain - Warehouse \neq DC \neq Transit facility \neq Silo \neq Crossdock \neq Fulfilment Center - If goals of Supply Chain is to ensure that customers got ``` the right item in the right quantity at the right place at the right time in the right condition at the right price at the optimum cost to the organization(s) ``` then, how these related to warehouse? # DEVELOPMENT OF WAREHOUSING MANAGEMENT source: Frazelle, E. 2002. "World-Class Warehousing & Material Handling" [Fra02] #### OBJECTIVES WAREHOUSING MANAGEMENT #### **OBJECTIVES** - To ensure availability of resources for planned level of business. - To meet throughput requirements. - To provide an cost effective service while meet business objectives. #### Specifically: Time, Space, & Cost - minimizing frequency/distance of movement - maximizing the use of cubic space - enabling the use of standard storage & handling equipment - speeding up loading & unloading - minimizing damages & thieving ### WHY DO WE NEED WAREHOUSE? - To prevent against fluctuations from suppliers and/or customers (Wal-Mart, SCG dealer) - To exploit economy of scale & fright consolidation (THD) - To perform value-added activities (e.g. HP DeskJet, NY) ### Units in Warehouse source: Bartholdi, J. & Hackmans, S. 2009. [BH09] **Stock Keeping Unit (SKU)** a unit identification (consider difference) in a warehouse. a pallet of red pens \neq a single red pen #### Warehouse as flow process system - Water: single SKU, and compressible flow - Flow balancing: incoming flow & outgoing flow - Keep flow moving: avoid double handling; space blocking - Smooth Flow: resolve bottlenecks, avoid layouts that impede smooth ### COMPONENTS IN WAREHOUSE - Facility: building, yard, surrounding - Human: manager, picker, checker, IT, consult - Material Handling: products, storage location, equipments - Processes: main activities, value-added logistics (VAL), counting, reconcile, document #### PRINCIPLE IN WAREHOUSING MANAGEMENT - F.A.S.T: - Flow: minimizing total movements/cost → no double handling - ullet Accessibility: inside & outside buildings ullet no blockage - **Space**: $\approx 40\%$ of cost related to warehouse; \rightarrow use hight - Throughput: equipments → use right & flexible ones - **Planning:** long-term goal & short-term req^m, control & feedback, - House keeping: clean, neat, safety, security & eco-friendly - Flexibility: free space, stacking area, multi-purpose equipment ## COMMON CLASSIFICATION OF WAREHOUSE Warehouse a physical location store inventory. Types of warehouse, providing useful insight, are: - Products: finish goods, work-in-process, raw materials - Unit of handling: MHE: pallet, carton, piece - Nature of Storage: security, storage requirement - **Storage Policy:** dedicated ← class-based → shared/random - **Temperature:** Frozen \leftarrow Chilled Air Condition \rightarrow Ambiance - Management: Public warehouse → Private warehouse - **Movement:** Men-to-Goods \leftarrow Goods-to-Men \rightarrow Automation - Business: retail, service parts, 3PL (DC), fulfillment # Example: 7Eleven store as a warehouse - Unit of handling: FG piece picking (basket) - Nature of Storage: security and authorize (back counter) - Temperature: frozen (ice cream, AirCon (Milk, Drink), ambiance (Grocery) - Policy: dedicate-class Management: private warehouse - Movement: Men-to-Goods - Others (TBR): 24/7, U-shaped layout, vertical bin-shelf racking # Inside CP All DC (7Eleven warehouse) - Nature: distributing products in 7Eleven for DC Fee and QC - Receiving: 10w or 18w supplier delivery as carton or pallet - Equipment: trolley, tote, RT, pick-to-light - ullet Picking: wave picking (heavy, pieces o tote), chilled - **Shipping:** 4w outsource as tote + beverage ## Warehousing activities source: Frazelle, E. 2001. [Fra02] #### Warehouse activity breakdown | Activities | Example | |-----------------|---| | Receiving (10%) | yard mgt, inspection, unitization | | Put-away (15%) | positioning, slotting, stock keeping | | Picking (55%) | dispatching, routing | | Shipping (20%) | sorting, <mark>loading</mark> , checker | source: Bartholdi, J. & Hackmans, S. 2009. [BH09] # ACTIVITIES IN WAREHOUSE source: Roodbergen, K. et al., 2008. [?] ## RECEIVING & PUT-AWAY ACTIVITIES #### RECEIVING - Idea: unloading & preparation - Importance: initiating all operations & activities - Basic: doing paper work & checking for quantity & quality #### Put-away - Idea: moving SKU to 'designated' locations - Importance: defining all works downstream. - Basic: recording where SKUs are consistently ### GROUPING PHILOSOPHY - SKU popularity: ABC based on frequency - Family group: value, temperature, hazardous, physical, lot number, tax - SKU rotation: FIFO (LILO), FILO, FEFO - Space utilization: maximizing storage space; minimize congestion - Quality: full pallet VS break bulk Put fast-moving items at convenient & suitable locations ### Non-productive activity: Storage - Idea: preventing SKUs for damage and/or degrading - Importance: what other thinking of warehouse - Basic: utilizing space, while maintain easy access - storage area: - Forward: storing products for carton/case/piece picking and customer delivery - Reserve: storing pallets for pallet picking or refill other area - storage policy: - Dedicated: reserved specific space for each SKUs - Shared: no reservation ### Between receiving & shipping source: Mulcahy, D. 1994. [Mul94] # PICKING ACTIVITY - Idea: getting SKU from 'designated' locations - Importance: majority of costs & times incurred - Basic: distributing 'order' & checking 'right' quantity - Principle: - Minimize loose items & staging for shipping - Minimize paperwork & time - Variation: - Single [order]: one tour for one order - Batch [order]: one tour for many orders - Zone: set area for each picker - Wave: coordinated between zones # PICKING VARIATION # SHIPPING & OTHER ACTIVITIES #### SORTING & SHIPPING - Idea: preparing & checking SKU before leaving warehouse - Importance: define productivity of warehouse, quality control - Basic: checking SKU, documenting transactions & loading in reverse order #### OTHERS - Value-added logistics: re-boxing & re-instruction (DKSH), sample assembly (Hefale), measuring & cutting (UF), MUJI price labeling (CRC) - Reverse logistics: dispose product (Tesco), cleaning tote (7-Eleven) - **Non value-added logistics:** visual inspection, counting, re-location (TUF), safety training(HomePro) # Benefits of equipment - Reduce cost (labor + space) - Enhance responsiveness - Maintain qualities of products & operations #### CLASSIFICATION OF EQUIPMENTS - Unitizing equipment: unit load → container, pallet, tote, - Storage & retrieval equipment: floor stack, rack, carousel, bin-shelve - Material handling equipment: forklift, hand truck, VNA, conveyor - Automatic identification & communication equipment: portable bar code reader, RFID # Concept of unitizing equipment - Idea: standardizing items/SKUs & making them easy to move & collect - Where: supplier site, receiving & shipping area - Issues: installation cost, volume, size & shape (7Eleven tote, Lotus cool box) - Example: pallet, wrapping machine ### Pallet & co - Idea: creating unit load by std platform - Issues: circulation, size, form # COMPARISON OF PALLET MATERIALS source: https://www.palltechpallets.co.uk | Material | Durability | Repairable | Env. Impact | Application | |--------------|------------|------------|-------------|-------------------------| | Wood | med | yes | recyclable | common | | Pressed Wood | med | yes | recyclable | printing, tiber | | Fiberboard | low | no | recyclable | paper, garment | | Plastic | high | no | closed loop | cement, automotive | | Metal | high | depends | closed loop | grocery, food, military | ### Shape of Pallet #### Standard Pallets ISO PALLETS 1000 mm \times 1200 mm US PALLET 40 in \times 48 in (1016 mm \times 1219 mm) or 42 in \times 48 in Euro Pallet 800 mm \times 600 mm & 800 mm \times 1200 mm # OTHER PALLETS # OTHER INDUSTRIAL PACKAGE # STORAGE & RETRIEVAL EQUIPMENTS - Idea: cubic space saving & efficient retrieving - Where: storage & picking area - Issue: standardization, FIFO, safety, ergonomic - Example: floor stack, selective rack (single deep & double deep), carrousel # FLOOR STACK: NO EQUIPMENT - Idea: stack pallets up-height - Pro: zero investment, multiple pallets per SKU, high inventory over - Con: honeycombing problem, stability - Issue: stack-ability, stack height, aisle width ### SINGLE-DEEP RACK - Idea: a pallet rack that has a single storage space - Pro: each pallet is independently accessible - Con: too many aisles \rightarrow inefficient space utilization # Double-Deep Rack - Idea: a pallet rack that has a double storage space - Important: Each lane dedicated to one SKU (one pallet or two pallets) - Pro: Less aisle space required (upto 50% savings in aisle space) - Con: More work and/or specialized equipment for retrieving ### PALLET FLOW RACK - Idea: a pallet rack that always brings next pallet - Important: separate picking & put-away - Pro: high pick density, FIFO - Con: space utilization, high cost # Gravity flow rack - Idea: a rack that always brings next case/carton (200+ picks/hr) - Pro: high pick density, FIFO - Con: space utilization, high cost #### BIN SHELVE - What: storing cabinet for case/carton - Pro: cheap, - Con: single access, ID, low pick density, LIFO # SMALL STORAGE ITEM EQUIPMENTS ## OTHER AUTOMATIC STORAGE EQUIPMENT - Idea: combine put-away, picking, storing - Pro: high hight, little labor - Con: investment, may double handling ## MATERIAL HANDLING EQUIPMENT - Idea: moving items/SKUs - Where: everywhere - Issue: reach, automation, space footprint, congestion - Example: hand truck, forklift, conveyor ## Counter balance forklift truck • Idea: unit-load mover equipped with motor & hydriodic • Pro: very useful • Con: wide turn \rightarrow wide aisle # Manual Equipment - Idea: manual equipment for moving pallet or tote (no driving cab) - Pro: small, cheap - Con: more manual, fixed height (i.e., not apply for reversible pallet) ## Industrial Trucks Swing Mast Reach Truck VNA truck - Idea: moving pallet from $A \rightarrow B$ with power - Type: turret, footprint, drivable, # pallets - Pro: save time & labor - Con: price, storage equipment #### Crane - Idea: moving items overhead - Pro: flexible shape/size - Con: restricted area, congestion with others #### OTHERS MHE: RAIL Tow Line AGV RGV - Idea: moving items on fixed paths usually as loop - Pro: eliminate worker - Con: restricted area, investment #### Conveyor - What: automatic moving 'regular' shape pallet - Pro: free labor - Con: large moving huge std. size, fixed paths ## VARIATION OF CONVEYORS • Selection: materials, slope, price, weight # IDENTIFICATION EQUIPMENT - Idea: speeding receiving & shipping - Where: receiving & shipping - Issue: integration with system - Example: RFID, bar code reader, magnet # ERP/WMS/TMS #### **ENTERPRISE SYSTEM** Customers Customers ADMIN/FINANCE MANUFACTURING PLANNING Suppliers Suppliers Carriers Carriers Purchasing MRP **Demand Mgmt** Order Management MES APS EDI/ EDI/ WEB WEB LABOR **WMS** MANAGEMENT **TMS** YARD MANAGEMENT Inventory Order Picking Staging Task Shipping Storage Receiving Mamt **Process** Replen Loading Mgmt **Data Entry Devices Material Handling Device Control** source: Brett Peters. "Collect-Industry Council on Material Handling Education" ## WHAT IS ERP? - Stand for: Enterprise Resources Planning - Information System: IT/IS for transaction in company - Integration: collect, analyze, & report all activities - Important: backbone of business - Industry: complex, retail, education - Standard Function: order mgt, sale, demand/material planning, HR, finance - Advance Function: inventory control, report, document control #### WHAT IS WMS? - Stand for: Warehouse Management System - Information System: IT/IS for operational in warehouse - Integration: collect, analyze, & report all activities - Important: strategic decision to modernize WH - Industry: high transaction, require tracking, computerize MHE - Standard Function: search & track SKU, batch processing, individual report - Advance Function: cycle count, profiling, RF, data transfer, WCS ## WMS Workflow source: ten Hompel & Schmidt. "Structure of a WMS from the Example of myWMS" [?] #### USEFUL INFORMATION #### **Material Handling** - Material Handling Taxonomy: http://www.mhia.org/industrygroups/cicmhe/resources/mhe tax.htm - Material Handling Pictures: https://www.cirrelt.ca/mhmultimediabank/ #### Warehouse Tours - Interactive Tour: http://www.roodbergen.com/warehouse/ - Warehouse Science: http://www2.isye.gatech.edu/jjb/wh/sites/sites.html ## U-SHAPED LAYOUT - Idea: single I/O point, very convenient locations - Where: distribution network - Issue: congestion near receiving & shipping #### I-SHAPED LAYOUT - Idea: two I/O point, many convenient locations - Where: manufacturing warehouse - Issue: traveling distance, # of admin, & combine works #### CUSTOM LAYOUT • Idea: mixed crossdock with storage $\bullet \ \ Where: \ \ll \mathsf{depends} \gg$ • Issue: ≪depends≫ #### REAL LAYOUT • What do you observe in this layout? ## EXERCISE I: DEFINING FAST MOVING PALLET | Description | SKU A | SKU B | |-------------------------------------|-----------------------|----------------| | Dimension (L \times W \times H) | 50 × 40 × 30 | 50 × 40 × 30 | | Price (dollar/pallet) | 20 | 20 | | Annual Sale (pallet/year) | 48 | 48 | | Quantity Per Order (pallet/month) | 4 | 4 | | Space in Warehouse (pallet) | 4 | 4 | | Demand | $1~{\sf pallet/week}$ | 4 pallet/month | Which SKU should put in a connivent location? & why #### Exercise II: Defining fast moving case | Description | SKU A | SKU B | |-------------------------------------|---------------|------------------| | Dimension (L \times W \times H) | 10 × 4 × 4 | 10 × 4 × 4 | | Price (dollar/case) | 20 | 20 | | Annual sale (case/year) | 480 | 480 | | Quantity per order (case/month) | 40 | 40 | | Space in warehouse (case) | 40 | 40 | | Space in warehouse (pallet) | 1 | 1 | | Demand | 10 cases/week | 20 case/biweekly | Which SKU should put in a connivent location? & why ## Warehouse Tours - Goals: sharing experiences & problems, connecting to industry - Organization: looking pro-con, brainstorm, discussion - Observe: - What are units handle in each warehouse? - What are equipments in each warehouse? (Is it make sense?) - What are the problems/issues in each warehouse? - Next steps: Field trips, Project ## Warehouse Intuition: Ace DC source: Tours of warehouses, distribution centers, crossdocks. http://www2.isye.gatech.edu/jjb/wh/sites/sites.html ## WAREHOUSE INTUITION: PEPSI, ATLANTA source: Tours of warehouses, distribution centers, crossdocks. http://www2.isye.gatech.edu/jjb/wh/sites/sites.html ## WAREHOUSE INTUITION: THD ## Warehouse Intuition: Boon Tha Vorn ## WHAT IS KPI? - What: a way to measure performance of organization/activity - Important: - indicate success of each activity - evaluate main objectives - measure progress of implementation (historical comparison) - measure productivity & efficiency - Issues: data collection, measurement, consistency #### Type of KPI? - Financial related KPI: % warehousing cost per total cost, cost per shipped SKU - Non-Financial related KPI: ## EXAMPLE OF NON-FINANCIAL KPI - Service Customer View: response time (order cycle time), shipment accuracy (correct qty/total qty), fill rate (qty shipped/ordered qty) - Service Warehouse View: dock-to-stock time, inventory accuracy, % cross-docking order - Productivity: lines per man-hour, cases per person-hour, cubic space utilization, equipment up-time - **Situation:** lines shipped per SKU, inventory turnover, investment pick accuracy, % of new SKUs, % active SKUs, labor turnover, lines per order, total lines shipped per day Adopted from Hackman, S. 1982. ## RATING OF SELECTED KPIS | KPI/Rating | Poor | Sub-Par | Par | Superior | Outstanding | |----------------------------|------|---------|---------|----------|-------------| | responding time (hrs) | >48 | 24-48 | 12-24 | 4-12 | <4 | | dock-to-store time (hrs) | >48 | 24-48 | 8-24 | 2-8 | <2 | | lines per man-hour | <5 | 5-10 | 10-20 | 20-50 | >50 | | cases per man-hour | 8-25 | 25-50 | 50-100 | 100-250 | >250 | | cubic utilization $(\%)$ | <65 | 65-75 | 75-85 | 85-95 | 0.95 | | annual lines per SKU | < 50 | 50-100 | 100-250 | 250-400 | >400 | | inventory accuracy (% qty) | >5.0 | 1.0-5.0 | 0.5-1.0 | 0.05-0.5 | < 0.05 | | inventory turn | <1.0 | 1.0-3.0 | 3.0-6.0 | 6.0-10.0 | >12.0 | source Hackman, S. et al. 2001 [HFG+01, ?]. #### NATURE OF WAREHOUSE - Warehouse is labor intensive - Warehouse is, in general, the last frontier in Supply Chain before start collaborate - Investment in warehouse depends on values of SKUs in warehouse - Broken pallets/cases tend to be damaged & lost - Flows of material in a warehouse is rarely balance at particular time - Works & effort warehousing activities are unbalance - Put-Away ≤ Pick-Up - \bullet Receiving \leq Shipping #### Typical issues in warehouse • Other: fire, safety, quality, use of data #### Summary: Warehouse ∈ Supply Chain - Warehouse ≠ storage room because balance flows, system, policy, equipments, etc - Warehousing management: maximizing usage of warehouse 'resources' at 'right' service level - Warehousing activities: focus on main activities, minimize non-value activities - Equipments: easy to handling/ storage/ track; - Layouts: put a fast moving items in convenient locations **F.A.S.T** = Flow/ Accessibility/ Space/ Throughput #### WH WHS MGT TEXTBOOK • Publisher: G.P Cyber Print [Kit18] • ISBN: 978-6164073722 #### REFERENCE [BH09] J. Bartholdi and S. Hackman. Warehouse & distribution science. Suply chain and logistics institute, Georgia institute of technology, 2009. [Fra02] E. Frazelle. World-class warehousing and material handling. McGraw-Hill Professional, 2002. [HFG⁺01] S. Hackman, E. Frazelle, P. Griffin, S. Griffin, and D. Vlasta. Benchmarking warehousing and distribution operations: an input-output approach. Journal of Productivity Analysis, 16(1):79–100, 2001. [Kit18] O. Kittithreerapronchai. Warehouse and Warehousing Management. G.P.Cyber Print, 1 edition, September 2018. [Mul94] D.E Mulcahy. Warehouse distribution and operations handbook. McGraw-Hill New York, 1994.